MATH 4341 – Combinatorial Design Theory Winter 2015

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday January 22nd in Assignment Box #37.
- 1. Construct a (13, 3, 1)-design.
- 2. Prove that every (6, 3, 2)-BIBD is simple.
- 3. Prove that no BIBD with v = 8, k = 3 and $\lambda = 1$ can exist.
- 4. The necessary conditions for the existence of a (v, 3, 1)-BIBD are that $v \equiv 1$ or 3 (mod 6). What are the necessary conditions for the existence of a (v, 4, 1)-BIBD?
- 5. Suppose that (X, \mathcal{A}) is a (v, b, r, k, λ) -BIBD and let (Y, \mathcal{B}) be the dual design of (X, \mathcal{A}) . Prove that the following are true:
 - (a) every block in \mathcal{B} has size r
 - (b) every point in Y occurs in exactly k blocks of \mathcal{B}
 - (c) any two distinct blocks $B_i, B_j \in \mathcal{B}$ intersect in exactly λ points
- 6. Exercise 1.11.