Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 15:00 on Friday March 15th in Assignment Box #48.
- 1. Prove: if there is a $T(\lambda, v)$ then $(\lambda, 6) = 1$ implies $v \equiv 1$ or 3 (mod 6), $(\lambda, 6) = 2$ implies $v \equiv 0$ or 1 (mod 3), and $(\lambda, 6) = 3$ implies $v \equiv 1 \pmod{2}$.
- 2. If n is odd, define $L_n = (\ell_{ij})$ by $\ell_{ij} = 2i j \pmod{n}$. If n is even and n > 2, define T_n to be the Latin square of order n derived from L_{n-1} by replacing each of $\ell_{1,2}, \ell_{2,3}, \ldots, \ell_{n-2,n-1}, \ell_{n-1,n}, \ell_{n,1}$ by n and then appending a new row and column that make the square Latin. Prove that L_n and T_n are idempotent Latin squares.
- 3. Suppose L is a symmetric Latin square of side n and that the symbol x occurs k times on the main diagonal.
 - (a) How many times does x occur above the diagonal?
 - (b) Prove that $k \equiv n \pmod{2}$.
 - (c) If L is also idempotent, prove that n is odd.
- 4. Use a Latin square of side 4 to construct a STS(13).
- 5. Use a Latin square of side 5 to construct a STS(15).