Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 15:00 on Friday February 1st in Assignment Box #48.
- 1. Prove that if there exists a $PBD(v, \{k, 3\}, 1)$ with $v \equiv 2 \pmod{3}$ then $k \equiv 2 \pmod{3}$.
- 2. Prove that no $PBD(8, \{4, 3\}, 1)$ can exist.
- 3. Prove that there is no $PBD(v, \{4, 3\}, 1)$ when $v \equiv 2 \pmod{3}$.
- 4. Prove that there cannot be any blocks of size 5 in a $PBD(7, \{5, 4, 3\}, 1)$. Can there be any blocks of size 4?
- 5. Prove there exists a BIBD $(7(3^t), 3, 1)$ for each integer $t \ge 0$.