MATH 4282 – Cryptography Winter 2019

Instructions

• Answer each question completely; justify your answers.

Definition: A *field* $(\mathcal{F}, +, \cdot)$ consists of a set \mathcal{F} along with two binary operations, + and \cdot , such that:

- \mathcal{F} is closed under both + and \cdot
- + and \cdot are both commutative (i.e., a + b = b + a and $a \cdot b = b \cdot a$)
- + and \cdot are both associative (i.e., a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$)
- distributes over + (i.e., $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$)
- there exists an element $1 \in \mathcal{F}$ such that $a \cdot 1 = a$ for all $a \in \mathcal{F}$
- there exists an element $0 \in \mathcal{F}$ such that a + 0 = a for all $a \in \mathcal{F}$
- for each $a \in \mathcal{F}$ there exists an element $(-a) \in \mathcal{F}$ such that a + (-a) = 0
- for each $a \in \mathcal{F}$ such that $a \neq 0$, there exists an element $a^{-1} \in \mathcal{F}$ such that $a \cdot a^{-1} = 1$

Note that when there is no confusion concerning + and \cdot , we often refer to the field as \mathcal{F} rather than $(\mathcal{F}, +, \cdot)$.

- 1. Determine whether each of the following is a field. Justify your answers.
 - (a) \mathbb{Z} , using standard arithmetic
 - (b) \mathbb{Q} , using standard arithmetic
 - (c) \mathbb{Z}_{26} , using modular arithmetic (modulo 26)
 - (d) \mathbb{Z}_p , where p is prime, using modular arithmetic (modulo p)
 - (e) $\{0\}$, using standard arithmetic

Fact: A matrix M over a field \mathcal{F} is invertible if and only if the rows of M are linearly independent.

- 2. Exercise 1.12 of Stinson: Let p be a prime. Show that the number of 2×2 matrices that are invertible over \mathbb{Z}_p is $(p^2 1)(p^2 p)$.
- 3. By \mathbb{Z}_n^* we denote the set $\{a \in \mathbb{Z}_n | \gcd(a, n) = 1\}$. A quadratic residue modulo n is any element x of \mathbb{Z}_n^* that is a square (i.e., $x = y^2$ for some $y \in \mathbb{Z}_n^*$). What are the quadratic residues for
 - (a) \mathbb{Z}_{23}^*
 - (b) \mathbb{Z}_{26}^*
 - (c) \mathbb{Z}_{27}^*

In a few weeks we will see in class how to determine whether a given element $x \in \mathbb{Z}_p^*$ is a quadratic residue, where p is a prime. For instance, we'll learn how to answer the question: Is 789 a quadradic residue in \mathbb{Z}_{5683}^* ?

A group (\mathcal{G}, \cdot) consists of a set \mathcal{G} along with a binary operation \cdot , such that:

- \mathcal{G} is closed under \cdot
- \cdot is associative (i.e., $a \cdot (b \cdot c) = (a \cdot b) \cdot c$)
- there exists an identity with respect to \cdot (i.e., there exists an element $e \in \mathcal{G}$ such that $a \cdot e = e \cdot a = a$ for all $a \in \mathcal{G}$)
- each element has an inverse (i.e., for each $a \in \mathcal{G}$ there exists an element $b \in \mathcal{G}$ such that $a \cdot b = b \cdot a = e$)

Note that we often refer to the group as \mathcal{G} rather than (\mathcal{G}, \cdot) . Notice also that \cdot need not be commutative; a group in which \cdot is commutative is called an *Abelian* group.

The notation a^n will be used to denote $\underbrace{a \cdot a \cdot a \cdots a}_{n \ a's}$. The order of an element $a \in \mathcal{G}$ is the smallest positive integer t such that $a^t = e$. If a has order $|\mathcal{G}|$ then a is a generator of \mathcal{G} .

- 4. Find all generators of each of the following groups:
 - (a) \mathbb{Z}_{17}^*
 - (b) \mathbb{Z}_{25}^*
- 5. Prove the following statement:

If the order of $a \in \mathbb{Z}_n^*$ is t and $a^s \equiv 1 \pmod{n}$, then t divides s.

- 6. (a) Suppose that α is a generator of \mathbb{Z}_n^* . Prove that α^k is a generator of \mathbb{Z}_n^* if and only if $gcd(k, \phi(n)) = 1$, where ϕ is Euler's totient function.
 - (b) Provided that \mathbb{Z}_n^* has at least one generator, then how many generators does it have?
 - (c) When p is prime, \mathbb{Z}_p^* is known to have a generator. How many generators are there in:
 - i. \mathbb{Z}_{31}^*
 - ii. \mathbb{Z}_{181}^*
 - iii. \mathbb{Z}_{257}^*
 - iv. $\mathbb{Z}_{2^{t}+1}^{*}$, where $(2^{t}+1)$ is prime
 - v. \mathbb{Z}_{2t+1}^* , where t and (2t+1) are prime
- 7. Solve for x by using Shanks' Algorithm:
 - (a) $13^x \equiv 12 \pmod{197}$
 - (b) $14^x \equiv 519 \pmod{557}$
 - (c) $7^x \equiv 922 \pmod{1433}$