MATH 2320 – Discrete Mathematics Winter 2021

Assignment #6

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 23:59 (Newfoundland time) on Tuesday March 9th.
- Submit your assignment via the D2L shell for the course.
- 1. Find integers q and r with $0 \leq r < |b|$ such that a = qb + r:
 - (a) a = 239, b = 7
 - (b) a = -8641, b = 6
 - (c) a = -9162, b = -27
 - (d) a = 27153, b = -35
- 2. Let a = 6408 and b = 1296. Let g be the greatest common divisor of a and b.
 - (a) Find g.
 - (b) Find integers m and n such that ma + nb = g.
 - (c) What is the least common multiple of a and b?
- 3. Let a = 84876 and b = 13794. Let g be the greatest common divisor of a and b.
 - (a) Find g.
 - (b) Find integers m and n such that ma + nb = g.
 - (c) What is the least common multiple of a and b?
- 4. Let a and b be integers that are not both zero. Prove that gcd(a, a + b) = gcd(a, b).
- 5. Find integers x and y such that 158x + 264y = 4.
- 6. Show that there is no integer solution to 196x + 245y = 8.
- 7. Prove: if $k \in \mathbb{N}$ then gcd(3k+2, 5k+3) = 1.
- 8. Find the prime decompositions for:
 - (a) n = 1701513
 - (b) n = 2476500
- 9. Let $a, b \in \mathbb{Z}$ and let p be a prime. Are the following assertions true or false? Justify your answers.
 - (a) If $p \mid (a+b)$ and $p \mid (a-b)$ then $p \mid a$.
 - (b) If $p \mid a$ and $p \mid (a^2 + b^2)$ then $p \mid b$.
 - (c) If $p \mid (a^9 + a^{17})$ then $p \mid a$.
- 10. Suppose a, b, p are integers such that p is prime, $gcd(a, p^2) = p$ and $gcd(b, p^3) = p^2$. Prove that $gcd(a + b, p^4) = p$.