MATH 2320 – Discrete Mathematics Winter 2021

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 23:59 (Newfoundland time) on Tuesday February 16th.
- Submit your assignment via the D2L shell for the course.
- 1. Define the relation \sim on $A = \mathbb{Z}$ by $a \sim b$ if $a^2 = b^2$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) What is $\overline{1}$?
 - (c) What is $\overline{0}$?
 - (d) What is A/\sim ?
- 2. Let $A = \mathbb{N}$ and define the relation \preceq on A by $a \preceq b$ if $a^3 \leq b^3$.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) Does this poset have a maximum? If yes, what is it?
 - (d) Does this poset have a minimum? If yes, what is it?
- 3. Let $A = \{2, 3, 4, \dots, 20\}$ and define \leq on A by $a \leq b$ if a divides b.
 - (a) Draw the Hasse diagram for the poset (A, \preceq) .
 - (b) Is \leq a total order?
 - (c) Does this poset have a maximum? If yes, what is it?
 - (d) Does this poset have a minimum? If yes, what is it?
 - (e) Does this poset have any minimal elements? If yes, what are they?
 - (f) Does this poset have any maximal elements? If yes, what are they?
 - (g) What is the least upper bound of elements 6 and 8?
 - (h) What is the greatest lower bound of elements 6 and 8?
- 4. Let $A = \mathbb{R}^2$ and define \preceq on A by $(a, b) \preceq (x, y)$ if $a \leqslant x$ and $b \leqslant y$.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) What is the least upper bound on $(\sqrt{2}, -7)$ and (5, 6)?
 - (d) What is the greatest lower bound on $(\pi, \frac{3}{4})$ and $(0, \frac{4}{3})$?

- 5. Let $A = \{1, 2, 3, \dots, 10\}$ and define the function $g : \mathcal{P}(A) \to \mathbb{Z}$ so that g(x) = |x|.
 - (a) What is the domain of g?
 - (b) How many elements are in the domain of g?
 - (c) What is the range of g?
 - (d) Is g surjective?
 - (e) Is g injective?
 - (f) Is g bijective?
- 6. Define $h : \mathbb{N}^2 \to \mathbb{N}$ by $h : (x, y) \mapsto (x + y)$.
 - (a) State the range of h.
 - (b) Is h surjective?
 - (c) Is h injective?
 - (d) Is h bijective?
- 7. Let $f : \mathbb{N} \to \mathbb{Q}$ be defined by $f(x) = \frac{x-2}{x+1}$.
 - (a) Is h surjective?
 - (b) Is h injective?
- 8. An integer that is greater than 1 is called *prime* if its only positive divisors are 1 and itself. In Chapter 4 we will prove that every integer n that exceeds 1 can be uniquely expressed as a product of primes.

Let $A = \mathbb{N} \setminus \{1\}$. Define the function $f : A \to A$ such that f(n) is the smallest prime divisor of n.

- (a) Is f surjective?
- (b) Is f injective?
- (c) Define the relation \sim on A by $a \sim b$ if f(a) = f(b). Is \sim an equivalence relation? If so, what is $\overline{30}$?