MATH 2320 – Discrete Mathematics Winter 2021

Assignment #3

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 23:59 (Newfoundland time) on Tuesday February 9th.
- Submit your assignment via the D2L shell for the course.
- 1. Prove or disprove: for all sets A, B and C, $(A \cap B = A \cap C) \Rightarrow (B = C)$.
- 2. Prove or disprove: for all sets A, B and C, $(A \oplus B = A \oplus C) \Rightarrow (B = C)$.
- 3. Let A and B be sets. Prove: $(A \cap B)^c = A^c \cup B^c$.
- 4. Determine whether the relation \mathcal{R} is reflexive:

(a)
$$\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x^2 - y^2 \text{ is even}\}$$

(b) $\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 \mid x^2 y \ge 0\}$

- 5. Determine whether the relation \mathcal{R} is symmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{N}^2 \mid x^2 + y > 0\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 | x y = 0\}$
- 6. Determine whether the relation \mathcal{R} is antisymmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 \ge y^2\}$
- 7. Determine whether the relation \mathcal{R} is transitive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x y \text{ is odd}\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid xy \text{ is even}\}$
- 8. Define the relation \sim on $A = \mathbb{Z}$ by $a \sim b$ if |a| = |b|.
 - (a) Prove that \sim is an equivalence relation.
 - (b) What is $\overline{1}$?
 - (c) What is $\overline{0}$?
 - (d) What is A/\sim ?

9. Define the relation \sim on $A = \mathbb{R}^2$ by $(a, b) \sim (x, y)$ if $a^2 + b = x^2 + y$.

- (a) Prove that \sim is an equivalence relation.
- (b) Provide a geometric description of $\overline{(1,-1)}$.