MATH 2320 – Discrete Mathematics Winter 2021

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 23:59 (Newfoundland time) on Tuesday February 2nd.
- Submit your assignment via the D2L shell for the course.
- 1. Determine whether the following statement is a tautology, a contradiction, or neither: $((P \text{ and } (\text{not } Q)) \Rightarrow Q) \Leftrightarrow ((P \text{ and } (\text{not } Q)) \Rightarrow (\text{not } P))$
- 2. Is the statement $P \Rightarrow (Q \text{ or } R)$ logically equivalent to the statement $(P \text{ and } (\text{not } Q)) \Rightarrow R$? Explain why or why not.
- 3. Let $A = \{w, x, y, z\}$. List all of the subsets B of A such that
 - (a) $\{x, y, z\} \subseteq B$
 - (b) $\{x, y, z\} \not\subseteq B$
 - (c) $\{x, y, z\} \subset B$
 - (d) $B \subseteq \{x, y, z\}$
 - (e) $B \not\subseteq \{x, y, z\}$
 - (f) $B \not\subset \{x, y, z\}$
- 4. Let $A = \{1, 2, 3, 9\}, B = \{2, 3, 5, 6, 7, 8, 9\}$, and $C = \{2, 4, 8\}$.
 - (a) Draw a Venn diagram showing the relationship between the sets, and where each element belongs.
 - (b) What are:
 - i. $A \cap B$ ii. $B \cup C$ iii. $A \cup (B \cap C)$ iv. $(A \cup B) \cap C$ v. $A \setminus (B \cap C)$ vi. $(A \setminus B) \cap C$ vii. $A \oplus B$ viii. $(B \cup C) \setminus A$ ix. $(B \oplus C) \setminus A$ x. $\mathcal{P}(C)$ xi. $\mathcal{P}(B \cap C)$ xii. $(A \cap C) \times B$

- 5. Let $A = \{a, b, c, \{a, b\}, \{a, b, c, d, e\}, f, \{e, f, g, h\}\}.$
 - (a) What is |A|?
 - (b) Indicate whether the following statements are true or false:
 - i. $\emptyset \in A$ ii. $f \in A$ iii. $g \in A$ iv. $\{f,g\} \in A$ v. $\{f,g\} \subseteq A$ vi. $\emptyset \subseteq A$ vii. $f \subseteq A$ viii. $\{a,b,c\} \subseteq A$ ix. $\{a,b,c\} \in A$ x. $\{b,f\} \subseteq A$ xii. $\{b,f\} \in A$ xii. $\{a,b\} \subseteq A$ xiii. $\{a,b\} \in A$
- 6. Let $A = (-\infty, 5)$, B = [-7, 14), C = (2, 10], and $U = \mathbb{R}$. What are:
 - (a) $A \cap B$
 - (b) $B \cup C$
 - (c) $A^c \setminus (B \cap C)$
 - (d) $(A \cup C) \setminus (A \cup B)^c$
 - (e) $B \oplus C$
 - (f) $C \setminus B^c$
- 7. Let A, B and C be subsets of some universal set U. Prove: $A \setminus (B \setminus C) = (A \setminus B) \cup (A \setminus C^c)$.
- 8. Consider the statement: \forall sets A, B, C and $D, (A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$. Is this statement true? If yes, prove it; otherwise show that it is false.
- 9. Consider the statement: \exists sets A, B, C and D such that $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$. Is this statement true? If yes, prove it; otherwise show that it is false.