Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 23:59 (Newfoundland time) on Tuesday January 26th.
- Submit your assignment via the D2L shell for the course.

The following symbols will be used to represent certain sets of numbers:

- \mathbb{N} the set of natural numbers, namely $\{1, 2, 3, \ldots\}$
- \mathbb{Z} the set of integers
- Q the set of rational numbers
- \mathbb{R} the set of real numbers
- \mathbb{C} the set of complex numbers
- 1. State whether the following are true, false, or not assertions.
 - (a) (9 is odd and $5 \ge 5$) $\Rightarrow -1^2 = 1$
 - (b) $\exists x \in \mathbb{R} \text{ such that } x^2 3x + 1 > 0$
 - (c) $\forall x \in \mathbb{R}, \ x^2 3x + 1 > 0$
 - (d) 0 is even
 - (e) Let n be a non-negative integer.
 - (f) If $x \in \mathbb{Z}$ then $x = \sqrt{x^2}$
- 2. For each assertion in Question 1 that is an implication,
 - (a) state the converse of the implication
 - (b) determine whether the converse holds
- 3. State the negation of each of the following statements (assuming that A, B and C are themselves statements with truth values):
 - (a) A and (B or not(C))
 - (b) (A or not B) or C
 - (c) ((not(A)) and (B)) or (C or not(D))

Definition. For integers a and b, we say that "a divides b" (written as " $a \mid b$ ") if there exists an integer q such that b = qa. Otherwise a does not divide b and we can write " $a \not\mid b$ ".

- 4. Explain why each of the following statements is false:
 - (a) 6 | 32
 - (b) $\forall n \in \mathbb{N}, 16 \mid n^2 \text{ if and only if } 8 \mid n$
 - (c) If $x, y \in \mathbb{R}$ such that x > 0 and y > 0, then $(x+5)^2 + (y+12)^2 \le 13^2$

- 5. Rewrite the following statements as English sentences. Also indicate whether each statement is true or false.
 - (a) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Q} \text{ such that } x < y.$
 - (b) $\exists x \in \mathbb{Z} \text{ such that } \forall y \in \mathbb{Q}, x \leqslant y.$
- 6. Find the negation of each statement in Question 5 and indicate whether it is true or false.
- 7. Let $x, y \in \mathbb{Z}$. Prove that xy is even if and only if x is even or y is even.
- 8. Consider the statement: $\forall x \in \mathbb{Z}$, x is odd $\Rightarrow 4 \mid (7x + x^3)$. Is this statement true or false?

 Justify your answer either with a proof or else with a counter-example.
- 9. Let a, b, u and v be integers such that $u \neq 0$ and $v \neq 0$. Consider the statement P: If au + bv = 0 then a = b = 0.
 - (a) Is P true? If yes, then prove P; otherwise show that P is false.
 - (b) State the converse of P.
 - (c) State the contrapositive of P.
 - (d) State the negation of P.
- 10. Suppose that a_1, a_2, \ldots, a_7 are positive integers and let m be their product. Prove that at least one of a_1, a_2, \ldots, a_7 is at least $\sqrt[7]{m}$.