MATH 2320 – Discrete Mathematics Winter 2020

Assignment #8

- 1. Suppose a, b, p are integers such that p is prime, $gcd(a, p^2) = p$ and $gcd(b, p^3) = p^2$. Prove that $gcd(a + b, p^4) = p$.
- 2. Suppose p and p + 2 are both prime and that p > 3. Prove that $6 \mid (p + 1)$.
- 3. Find the prime decompositions for:

(a) n = 1701513

(b) n = 2476500

- 4. Reduce $a \mod n$
 - (a) a = 456723, n = 21
 - (b) a = (9675)(5679), n = 43
 - (c) $a = (901)^{68} (651)^{200}, n = 12$
- 5. Solve the following congruences:
 - (a) $3x \equiv 19 \pmod{47}$
 - (b) $7x \equiv 18 \pmod{431}$
 - (c) $8x \equiv 9 \pmod{21}$
 - (d) $8x \equiv 16 \pmod{28}$
 - (e) $6x \equiv 0 \pmod{18}$
 - (f) $7x \equiv 18 \pmod{43102}$
 - (g) $3x \equiv 19 \pmod{48}$

6. Solve the following systems of congruences:

- (a) $5x 2y \equiv 0 \pmod{11}$ and $2x + y \equiv 8 \pmod{11}$
- (b) $8x + 4y \equiv 2 \pmod{23}$ and $x 3y \equiv 7 \pmod{23}$
- (c) $6x 7y \equiv 8 \pmod{33}$ and $4x + 2y \equiv 3 \pmod{33}$

7. Solve the following system of congruences: x ≡ 42 (mod 77) x ≡ 77 (mod 100)
8. Solve the following system of congruences: x ≡ 7 (mod 12)

8. Solve the following system of congruences: $x \equiv 7 \pmod{12}$ $x \equiv 5 \pmod{25}$ $x \equiv 9 \pmod{37}$ 9. Solve the following system of congruences: $x \equiv 3 \pmod{4}$ $x \equiv 2 \pmod{9}$ $x \equiv 4 \pmod{25}$ $x \equiv 7 \pmod{49}$