MATH 2320 – Discrete Mathematics Winter 2020

Assignment #3

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday February 13th in Assignment Box #43.
- 1. Let A and B be sets. Prove: $(A \cap B)^c = A^c \cup B^c$.
- 2. Consider the statement: $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$ for all sets A, B, C and D. Is this statement true? If yes, prove it; otherwise show that it is false.
- 3. Let $A = (-\infty, -6), B = [-8, -\pi), C = (-4, \sqrt{2}]$, and $U = \mathbb{R}$. What are:
 - (a) $A \cap B$
 - (b) $B \cup C$
 - (c) $A^c \setminus (B \cap C)$
 - (d) $(A \cup C) \setminus (A \cup B)^c$
 - (e) $B \oplus C$
 - (f) $C \setminus B^c$
- 4. Let A, B and C be subsets of some universal set U. Prove: $A \setminus (B \setminus C) = (A \setminus B) \cup (A \setminus C^c)$.
- 5. Determine whether the relation \mathcal{R} is reflexive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 | x^2 + y^2 \text{ is even} \}$ (b) $\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 | xy > 0 \}$
- 6. Determine whether the relation \mathcal{R} is symmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{N}^2 | x + y = 1000\}$ (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 | x - y < 49\}$
- 7. Determine whether the relation \mathcal{R} is antisymmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \, | \, x^2 \leq y^2 \}$
- 8. Determine whether the relation \mathcal{R} is transitive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x + y \text{ is odd}\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid xy \text{ is odd}\}$