MATH 2320 – Discrete Mathematics Winter 2020

Assignment #2

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday February 6th in Assignment Box #43.
- 1. Let a, b, u and v be integers such that $u \neq 0$ and $v \neq 0$. Consider the statement P: If au + bv = 0 then a = b = 0.
 - (a) Is P true? If yes, then prove P; otherwise show that P is false.
 - (b) State the contrapositive of P.
 - (c) State the converse of P.
 - (d) State the negation of P.
- 2. Let a_1, a_2, a_3 be positive integers and let $m = \prod_{i=1}^{n} a_i$.

Prove that at least one of a_1, a_2, a_3 is at least $\sqrt[3]{m}$.

- 3. Prove that $\log_2 5$ is irrational.
- 4. Determine whether the following statement is a tautology: P or $((P \text{ and } (\text{not } Q)) \Rightarrow R)$
- 5. Is the statement $P \Rightarrow (Q \text{ or } R)$ logically equivalent to the statement $(P \text{ and } (\text{not } Q)) \Rightarrow R$? Explain why or why not.
- 6. Let $A = \{w, x, y, z\}$. List all of the subsets B of A such that
 - (a) $\{x, y\} \subseteq B$
 - (b) $\{x, y\} \not\subseteq B$
 - (c) $\{x, y\} \subset B$
 - (d) $B \subseteq \{x, y\}$
 - (e) $B \not\subseteq \{x, y\}$
 - (f) $B \not\subset \{x, y\}$
- 7. Let $A = \{1, 4, 8, 9\}, B = \{3, 4, 6, 7, 9\}$, and $C = \{2, 4, 6\}$.
 - (a) Draw a Venn diagram showing the relationship between the sets, and where each element belongs.
 - (b) What are:

i. $A \cap B$ ii. $B \cup C$ iii. $A \cup (B \cap C)$ iv. $(A \cup B) \cap C$ v. $A \setminus (B \cap C)$ vi. $(A \setminus B) \cap C$ vii. $(B \cup C) \setminus A$ viii. $\mathcal{P}(C)$

- 8. Let $A = \{a, b, \{a, b, c\}, \{a, c, d, e, g\}, f, \{e, f, g\}\}.$
 - (a) What is |A|?
 - (b) Indicate whether the following statements are true or false:
 - i. $\emptyset \in A$ ii. $f \in A$ iii. $g \in A$ iv. $\{f,g\} \in A$ v. $\{f,g\} \subseteq A$ vi. $\emptyset \subseteq A$ vii. $f \subseteq A$ viii. $\{a,b,c\} \subseteq A$ ix. $\{a,b,c\} \in A$ x. $\{b,f\} \subseteq A$ xi. $\{b,f\} \in A$ xii. $\{a,g\} \subseteq A$ xiii. $\{a,g\} \in A$