MATH 2320 – Discrete Mathematics Fall 2018

Assignment #4

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday October 11th in Assignment Box #41.
- 1. Define the relation \sim on \mathbb{Z} by $a \sim b$ if $(a^2 b^2)$ is even.
 - (a) Prove that \sim is an equivalence relation.
 - (b) What is $\overline{1}$?
 - (c) What is \mathbb{Z}/\sim ?
- 2. Let $A = \{1, 2, 3, \dots, 15\}$ and define \preceq on A by $a \preceq b$ if a divides b.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) Does this poset have a maximum? If yes, what is it?
 - (d) Does this poset have a minimum? If yes, what is it?
 - (e) What are the maximal elements of this poset?
 - (f) What are the minimal elements of this poset?
 - (g) What is the least upper bound of elements 3 and 4?
 - (h) What is the greatest lower bound of elements 5 and 6?
 - (i) Draw the poset's Hasse diagram.
- 3. Let $A = \mathbb{R}^2$ and define \preceq on A by $(a, b) \preceq (x, y)$ if $a \leq x$ and $b \geq y$.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) What is the least upper bound on $(9, -\sqrt{3})$ and (4, 2)?
 - (d) What is the greatest lower bound on $(\pi^2, \frac{4}{3})$ and $(-7, \frac{3}{4})$?
- 4. Let $A = \{1, 2, 3, \dots, 8\}$ and define the function $g : \mathcal{P}(A) \to \mathbb{Z}$ so that g(x) = |x|.
 - (a) What is the domain of g?
 - (b) How many elements are in the domain of g?
 - (c) What is the range of g?
 - (d) Is g surjective?
 - (e) Is g injective?
 - (f) Is g bijective?
- 5. Define $h : \mathbb{N}^2 \to \mathbb{N}$ by $h : (x, y) \mapsto (x + y)$.
 - (a) State the domain of h.
 - (b) State the range of h.
 - (c) Is h surjective?
 - (d) Is h injective?
 - (e) Is h bijective?