MATH 2320 – Discrete Mathematics Fall 2018

Assignment #3

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday October 4th in Assignment Box #41.
- 1. Let $A = (-\infty, -5]$, $B = [-9, -\sqrt{2})$, $C = (0, \pi)$, and $U = \mathbb{R}$. What are:
 - (a) $A \cap B$
 - (b) $B \cup C$
 - (c) $A^c \setminus (B \cap C)$
 - (d) $(A \cup C) \setminus (A \cup B)^c$
 - (e) $B \oplus C$
 - (f) $C \setminus B^c$
- 2. Let A, B and C be subsets of some universal set U. Prove: $A \setminus (B \setminus C) = (A \setminus B) \cup (A \setminus C^c)$.
- 3. Consider the statement: $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$ for all sets A, B, C and D. Is this statement true? If yes, prove it; otherwise show that it is false.
- 4. Determine whether the relation \mathcal{R} is reflexive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x^2 + y^2 \text{ is odd} \}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 \,|\, xy \ge 0\}$
- 5. Determine whether the relation \mathcal{R} is symmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{N}^2 \mid x + y = 9\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 y^2 \ge 4\}$
- 6. Determine whether the relation \mathcal{R} is antisymmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \, | \, x \leq y \}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 \leqslant y^2\}$
- 7. Determine whether the relation \mathcal{R} is transitive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x + y = 0\}$
 - (b) $\mathcal{R} = \{(x,y) \in \mathbb{Q}^2 \mid x+y \in \mathbb{Z}\}$
- 8. Define the relation \sim on \mathbb{R}^2 by $(a,b) \sim (c,d)$ if 2a-b=2c-d.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Provide a geometric description of $\overline{(2,4)}$.
- 9. Define the relation \sim on \mathbb{Z} by $a \sim b$ if 3a + b is even.
 - (a) Prove that \sim is an equivalence relation.
 - (b) What is $\overline{3}$?
 - (c) What is \mathbb{Z}/\sim ?