MATH 2320 – Discrete Mathematics Fall 2017

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday November 9th in Assignment Box #35.
- 1. Suppose $a, b, c \in \mathbb{Z}$ such that a and b are relatively prime, $a \mid c$ and $b \mid c$. Prove that $ab \mid c$.
- 2. Prove that if $a \in 2\mathbb{N} 1$ then gcd(a, a + 2) = 1.
- 3. Reduce $a \mod n$
 - (a) a = 456723, n = 19
 - (b) a = (9675)(5679), n = 41
 - (c) $a = (902)^{68} (671)^{200}, n = 12$
 - (d) $a = (-8766)^{5765}(-6789)^{3231}, n = 7$
- 4. Solve the following congruences:
 - (a) $3x \equiv 19 \pmod{44}$
 - (b) $7x \equiv 18 \pmod{430}$
 - (c) $8x \equiv 9 \pmod{20}$
 - (d) $8x \equiv 16 \pmod{20}$
 - (e) $6x \equiv 0 \pmod{12}$
- 5. Solve the following systems of congruences:
 - (a) $5x 2y \equiv 0 \pmod{11}$ and $2x + y \equiv 3 \pmod{11}$
 - (b) $8x + 4y \equiv 2 \pmod{22}$ and $x 3y \equiv 7 \pmod{22}$
 - (c) $6x 7y \equiv 8 \pmod{33}$ and $3x + 2y \equiv 1 \pmod{33}$

6. Section 4.4, Exercise 14, parts (b), (c) and (d).

7.	Solve the	following system	of congruences:	$\begin{array}{l} x \equiv 88 \\ x \equiv 77 \end{array}$	$\pmod{99}$ $\pmod{100}$
8.	Solve the :	following system	of congruences:	$\begin{array}{l} x \equiv 7 \\ x \equiv 5 \\ x \equiv 9 \end{array}$	$\pmod{11}$ $\pmod{18}$ $\pmod{37}$
9.	Solve the :	following system	of congruences:	$x \equiv 2$ $x \equiv 3$ $x \equiv 11$ $x \equiv 8$	$\pmod{4}$ $\pmod{9}$ $\pmod{25}$ $\pmod{49}$