$\begin{array}{ll} MATH~2320-Discrete~Mathematics\\ Fall~2017 \end{array}$

Assignment #2

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday September 28th in Assignment Box #35.
- 1. Let a, b, u and v be integers such that $u \neq 0$ and $v \neq 0$. Consider the statement P: If au + bv = 0 then a = b = 0.
 - (a) Is P true? If yes, then prove P; otherwise show that P is false.
 - (b) State the contrapositive of P.
 - (c) State the converse of P.
 - (d) State the negation of P.
- 2. Let a_1, a_2, a_3 be positive integers and let $m = \prod_{i=1}^{3} a_i$.

Prove that at least one of a_1, a_2, a_3 is at least $\sqrt[3]{m}$.

- 3. Prove that $\log_2 5$ is irrational.
- 4. Determine whether the following statement is a tautology: P or $(P \text{ and } (\text{not } Q)) \Rightarrow R)$
- 5. Is the statement $P \Rightarrow (Q \text{ or } R)$ logically equivalent to the statement $(P \text{ and } (\text{not } Q)) \Rightarrow R$? Explain why or why not.
- 6. Exercise 2.1.3 (except part (a)). This question is on page 42 of the textbook.
- 7. Let $A = \{1, 4, 6, 8\}, B = \{3, 7, 9\}, \text{ and } C = \{2, 4, 6, 7\}.$
 - (a) Draw a Venn diagram showing the relationship between the sets, and where each element belongs.
 - (b) What are:
 - i. $B \cup C$
 - ii. $A \cup (B \cap C)$
 - iii. $A \setminus (B \cap C)$
 - iv. $(A \setminus B) \cap C$
 - v. $(B \cup C) \setminus A$
 - vi. $\mathcal{P}(B)$

- 8. Let $A = \{a, b, c, \{a, b, c, d\}, \{c, d, e\}, f, \{f, g\}\}.$
 - (a) What is |A|?
 - (b) Indicate whether the following statements are true or false:
 - i. $\emptyset \in A$
 - ii. $f \in A$
 - iii. $g \in A$
 - iv. $\{f,g\} \in A$
 - v. $\{f,g\} \subseteq A$
 - vi. $\emptyset \subseteq A$
 - vii. $f \subseteq A$
 - viii. $\{a, b, c\} \subseteq A$
 - ix. $\{a, b, c\} \in A$
 - $x. \{b, f\} \subseteq A$
 - xi. $\{b, f\} \in A$
- 9. Let $A = (-\infty, -6), B = (-8, 5), C = [0, 12], \text{ and } U = \mathbb{R}$. What are:
 - (a) $A \cap B$
 - (b) $B \cup C$
 - (c) $A^c \setminus (B \cap C)$
 - (d) $(A \cup C) \setminus (A \cup B)^c$
 - (e) $B \oplus C$
 - (f) $C \setminus B^c$
- 10. Let A, B and C be sets. Prove: $(A \cap B) \times C = (A \times C) \cap (B \times C)$.