Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Wednesday October 17th in Assignment Box #42.
- 1. Let π be the plane spanned by the vectors $\mathbf{u} = \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3 \\ 1 \\ 7 \end{bmatrix}$.
 - (a) Find $p = \operatorname{proj}_{V} u$.
 - (b) Find $q = \text{proj}_{U} v$.
 - (c) Find two orthogonal vectors in π .
- 2. Consider the point P(2,3,6) and the plane π with equation 2x 12y + 3z = 6. Find the distance from P to π .
- 3. Consider the point Q(0,2,10) and the line λ with equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ -5 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$.
 - (a) Find the distance from Q to λ .
 - (b) Find the point on λ that is closest to Q.

4. Consider the vector
$$\mathbf{v} = \begin{bmatrix} 2\\ -4\\ 8 \end{bmatrix}$$
 and the plane π with equation $2x + y - 3z = 0$.
Find proj_ \mathbf{v} .

 $\operatorname{proj}_{\pi}$

5. Consider the vectors
$$\mathbf{v}_1 = \begin{bmatrix} 7\\2\\8 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2\\-1\\3 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 1\\0\\4 \end{bmatrix}$.

Determine whether these vectors are linearly independent or linearly dependent.

6. Consider the vectors
$$\mathbf{v}_1 = \begin{bmatrix} 4\\ 2\\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4\\ -6\\ 6 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 2\\ 3\\ -3 \end{bmatrix}$.

Determine whether these vectors are linearly independent or linearly dependent.

7. Consider the vectors
$$\mathbf{v}_1 = \begin{bmatrix} 0\\2\\4\\0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2\\1\\3\\1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\0\\4\\2 \end{bmatrix}$ and $\mathbf{v}_4 = \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}$.

Determine whether these vectors are linearly independent or linearly dependent.