Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Wednesday October 3rd in Assignment Box #42.
- 1. Find $u \times v$, given that $u = \begin{bmatrix} -2\\ 3\\ 2 \end{bmatrix}$ and $v = \begin{bmatrix} -3\\ 4\\ 7 \end{bmatrix}$
- 2. Find an equation for the plane containing the points A(1,2,3), B(-1,-4,-7) and C(5,2,0).
- 3. Find an equation for the line containing the points A(4, 3, -10) and B(9, 4, 1).
- 4. Consider the line λ_1 with equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 7 \end{bmatrix} + t \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ and the line λ_2 with equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -5 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ -4 \end{bmatrix}$.
 - (a) Are λ_1 and λ_2 parallel?
 - (b) Do λ_1 and λ_2 intersect?
 - (c) If λ_1 and λ_2 intersect then find the point(s) of intersection.
- 5. Consider the plane π with equation 5x 2y + z = 17 and the line λ with equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix} =$
 - $\left[\begin{array}{c} 6\\1\\2\end{array}\right]+t\left[\begin{array}{c} 1\\-2\\3\end{array}\right].$
 - (a) Identify a normal to π .
 - (b) Identify a direction vector for λ .
 - (c) Do π and λ intersect?
 - (d) If π and λ intersect then find the point(s) of intersection.