SAMPLE FINAL

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Mathematics 3000

FINAL EXAMINATION

December, 2006

ANSWER ALL QUESTIONS

TIME: 2 Hours

MARKS

- 12 1. Give a precise mathematical definition of each of the following.
 - (a) $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.
 - (b) The function $f: I \mapsto \mathbb{R}$ is *continuous* at $c \in I$, an open interval.
 - (c) The function f is uniformly continuous on the interval I.
- 12 2. State (**NO PROOF**) each of the following.
 - (a) The **Bolzano–Weierstrass Theorem**.
 - (b) The Sequential Criterion for Continuity.
 - (c) The Intermediate Value Theorem.
 - (d) The Uniform Continuity Theorem.
- 6 3. Answer each of the following and include a **brief** explanation.
 - (a) Give an example of a function $f:[0, 1] \mapsto \mathbb{R}$ that is discontinuous at every x.
 - (b) Give an example of a continuous function on an interval I that is not uniformly continuous on I.
- 30 4. Prove each of the following using the appropriate " ϵN " or " $\epsilon \delta$ " definition.
 - (a) $\lim_{n \to \infty} \frac{3n^2 2}{n^2 + 1} = 3.$
 - (b) $f(x) = \frac{x^2 + 2}{x}$ is continuous at x = 1.
 - (c) $f(x) = \frac{1}{1+x^2}$ is uniformly continuous on $(1, \infty)$.

- 15 5. Let $x_1 = 1$ and $x_{n+1} = \sqrt{5 + 4x_n}$ for $n \ge 1$.
 - (a) Show that $x_n < x_{n+1}$ for $n \ge 1$.
 - (b) Prove that $1 \le x_n < 5$ for $n \ge 1$.
 - (c) Find $\lim_{n\to\infty} x_n$. Justify.
- 6. Express S as one or more intervals where $S = \{x \in \mathbb{R} : \frac{1-2x}{x^2-3} < -3\}$. Find $\sup S$ and $\inf S$ by inspection. Show all work.
- 8 7. Using the Intermediate Value Theorem, show that the equation

$$\frac{x^4 + 2x^2 + 5}{x - 1} + \frac{x^6 + 2x^4 + 6}{x} = 0$$

has a solution in the open interval (0,1).

- 8. Suppose that $f:(a,b) \mapsto \mathbb{R}$ is uniformly continuous. If $|f(x)| \geq k > 0$ for all $x \in (a,b)$ prove that $\frac{1}{f(x)}$ is uniformly continuous on (a,b).
- 9. **BONUS QUESTION.** Suppose that $f:[a,b] \mapsto \mathbb{R}$ is continuous.

Prove **EXACTLY ONE** of the following.

- (a) f(x) is bounded on [a, b].
- (b) f(x) is uniformly continuous on [a, b].