MATH 1000, Slot F05

Due: Oct. 6/2009 (Tuesday) by 5pm

1. Let $f(x) = \begin{cases} \sqrt{2-x} & \text{if } x \le 1 \\ \frac{x^3+1}{3-x} & \text{if } x > 1. \end{cases}$

Determine, giving a very brief reason for each, whether or not f(x) is continuous on each of the open intervals $(-\infty, 1)$, $(-\infty, 2)$, $(-\infty, 3)$ and $(-\infty, 4)$.

- 2. Briefly explain why $f(x) = (x 1)^2 \ln x 1$ has an absolute maximum, an absolute minimum and a root in the interval [1, e]. Find exactly, or approximate using your calculator if necessary, the x-coordinates of these points.
- 3. For each function, set up and then evaluate $\lim_{w \to x} \frac{f(w) f(x)}{w x}$ or $\lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ (your choice). In other words, find f'(x) in each case.
 - (a) $f(x) = x^2 5x + 1$.
 - (b) $f(x) = \frac{x-1}{1-2x}$.
 - (c) $f(x) = \sqrt{3x 2}$.
- 4. If the derivative of f(x) is $f'(x) = 2 7x 15x^2$, find each of the following:
 - (a) the slope of the tangent line and the slope of the normal line to f(x) at x = 1,
 - (b) the values of x where the graph of f(x) has a horizontal tangent line.
- 5. Sketch the graph of $y = \sin x$ on a sheet of paper or on your calculator. By inspecting the graph, what should the equation of the tangent line be at the point on the graph with x-coordinate $x = \frac{\pi}{2}$.
- 6. Find the derivative of each function using the rules for derivatives on pages 66 and 67 of the Course Notes. Indicate the Table 2 Rule that you used. Then, find the slope of the tangent line to the curve at x = -1.
 - (a) $f(x) = 3x^3 2x^2 + 4x 3$
 - (b) $f(x) = \frac{1}{x^2} e^x$
 - (c) $f(x) = \frac{1+4x-3x^2}{5}$
- 7. For what two values of x does $g(x) = 2x^3 x^2 8x + 33$ have a horizontal tangent? Give the equation of one of the horizontal tangent lines (your choice).