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1. Introduction

Throughout this paper
∞∑

n=0

an is a series of real or complex num-

bers and {sn} represents its associated sequence of partial sums. The

sequence {pk}∞0 is nonnegative and satisfies
∞∑

k=n

pk > 0 for each n.

In addition p(x) :=
∞∑

k=0

pkx
k, ps(x) :=

1

p(x)

∞∑
k=0

pkskx
k, and ρp de-

notes the radius of convergence of p(x). The real sequence {λn} satisfies

1 ≤ λ0 < λ1 < · · · → ∞.

Definition 1.1. Suppose that ρp > 0 and ps(x) exists for each x ∈
(0, ρp). If lim

x→ρ−p

ps(x) = s then we say that {sn} is limitable to s by the

power series method (P ) and write sn → s (P ).

When there can be no ambiguity about the underlying sequence {pk},
we drop the subscript on the radius of convergence and use ρ instead

of ρp.

Power series methods have been extensively studied. For example,

see [6]. The basic regularity results, although available in [6], were

concisely summarized by Borwein in [4] and his result is recalled here.

Theorem 1.1.

(1) If 0 < ρ < ∞ then (P ) is regular if and only if
∞∑

k=0

pkρ
k = ∞.

(2) If ρ = ∞ then (P ) is regular.

For ordinary Abel summability take pk = 1 for all k. Then p(x) =
1

1− x
, ρ = 1, and ps(x) = (1 − x)

∞∑
k=0

skx
k. For Borel summability
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pk =
1

k!
, p(x) = ex, ρ = ∞, and ps(x) = e−x

∞∑
k=0

sk

k!
xk. These are

two examples of continuous power series methods. Next we define the

discrete types.

Set

xn =

ρ− 1
λn

if 0 < ρ < ∞,

λn if ρ = ∞.

Definition 1.2. If ps(xn) exists for all n and lim
n→∞

ps(xn) = s then we

say that sn is limitable to s by the discrete power series method (Pλ)

and write sn → s(Pλ).

Discrete methods have been studied recently by Armitage and Mad-

dox in [1] and [2]. Note that (Pλ) includes (P ) in the sense that

sn → s(P ) implies sn → s(Pλ).

Theorem 1.2.

(1) If 0 < ρ < ∞ then (Pλ) is regular if and only if
∞∑

k=0

pkρ
k = ∞.

(2) If ρ = ∞ then (Pλ) is regular.

Proof. Part (2) and one direction of (1) follow immediately from theo-

rem 1.1 and the observation preceeding this theorem. So, assume (Pλ)

is regular and suppose, as we may, that for some fixed m, pm > 0.

Now, lim
n→∞

p(xn) =
∞∑

k=0

pkρ
k since, for any N ,

∞∑
k=0

pkρ
k ≥

∞∑
k=0

pkx
k
n ≥

N∑
k=0

pkx
k
n.

Hence
∞∑

k=0

pkρ
k ≥ lim

n→∞
p(xn) ≥

N∑
k=0

pkρ
k.

Define a sequence {sk} by

sk =

0 if k 6= m
1

pm
if k = m.
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Then,

ps(xn) =
1

p(xn)

∞∑
k=0

pkskx
k
n

=
xm

n

p(xn)
→ 0 as n →∞.

Therefore lim
n→∞

p(xn) = ∞ and, hence,
∞∑

k=0

pkρ
k = ∞.

2. Abelian Results

Adopt the notation Eλ = {λn : n ≥ 0}. We prove the following result

which includes Theorem 1 of [2].

Theorem 2.1. Suppose that (Pλ) is regular and that pk > 0 for all

k ≥ 0.

(1) Pλ ⊆ Pµ if and only if Eµ − Eλ is finite.

(2) Pµ = Pλ if and only if Eµ∆Eλ is finite.

Proof.

It suffices to prove part (1) for then (2) is immediate. Let {xn} be

as defined in the previous section and let {yn} be the sequence that

corresponds to {µn}. That is,

yn =

ρ− 1
µn

if 0 < ρ < ∞,

µn if ρ = ∞.

If Eµ − Eλ is finite then there exists an N ∈ N such that {yn : n ≥
N} ⊆ {xn : n ∈ N}. Set yn = xjn for n ≥ N .

Suppose that sn → s(Pλ). Then lim
n→∞

ps(xn) = s. But we then have

lim
n→∞

ps(yn) = lim
n→∞

ps(xjn) = s.

For the reverse implication suppose, by way of contradiction, that

Pλ ⊆ Pµ but that Eµ − Eλ is infinite. Then there exists a subse-

quence µ′ of µ, say {µnk
} such that Eµ′ ∩ Eλ = ∅. Construct, as we

may, a continuous function φ : (−∞,∞) → [0,∞) such that φ(λk) =

0, and φ(µnk
) = p(ynk

).
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Suppose first that 0 < ρ < ∞. By a theorem of Carleman (see [5] or

[3]) there exists an entire function g such that

|g(x)− φ(x)| < 1

1 + |x|
for all x ∈ R.

Set f(z) = g(
1

ρ− z
). Then f is analytic for |z| < ρ so there ex-

ists a sequence {sk} such that f(z) =
∞∑

k=0

skz
k for |z| < ρ. Set bk =

sk

pk

for all k ≥ 0. Then, for the sequence {bk},

|ps(xn)| =
1

p(xn)
|
∞∑

k=0

pkbkx
k
n|

=
1

p(xn)
|
∞∑

k=0

skx
k
n|

=
1

p(xn)
|f(xn)|

=
1

p(xn)
|g(λn)|

=
1

p(xn)
|g(λn)− φ(λn)|

<
1

p(xn)

1

λn

→ 0 as n →∞.

Hence bn → 0(Pλ).
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On the other hand,

|ps(ynk
)| =

1

p(ynk
)
|
∞∑

j=0

pjbjy
j
nk
|

=
1

p(ynk
)
|
∞∑

j=0

sjy
j
nk
|

=
1

p(ynk
)
|f(ynk

)|

=
1

p(ynk
)
|g(µnk

)|

≥ 1

p(ynk
)
{|φ(µnk

)| − |g(µnk
)− φ(µnk

|}

≥ 1− 1

p(ynk
)µnk

→ 1 as k →∞.

Therefore bk 6→ 0(Pµ). This is a contradiction.

Now suppose ρ = ∞. In this case, g(z) =
∞∑

k=0

skz
k. With {bk} as

above we get,

|ps(xn)| =
1

p(xn)
|
∞∑

k=0

pkbkx
k
n|

=
1

p(xn)
|g(xn)|

=
1

p(λn)
|g(λn)− φ(λn)|

<
1

p(λn)

1

λn

→ 0 as n →∞.

Hence bk → 0(Pλ).
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But,

|ps(ynk
)| =

1

p(ynk
)
|
∞∑

j=0

pjbjy
j
nk
|

=
1

p(ynk
)
|g(ynk

)|

=
1

p(µnk
)
|g(µnk

)|

≥ 1

p(µnk
)
{|φ(µnk

)| − |g(µnk
)− φ(µnk

|}

≥ 1− 1

p(µnk
)µnk

→ 1 as k →∞.

Therefore, as previously, bk 6→ 0(Pµ). This completes the proof.

Corollary 2.2. If (Pλ) is regular and pk > 0 for all k ≥ 0, then (P ) ⊂
(Pλ).

Proof.

Set µn =
λn + λn+1

2
for n ≥ 0. Then Eλ ∩ Eµ = ∅. Hence we cannot

have (Pλ) ⊆ (Pµ). Therefore there exists a sequence {sk} such that

sk → s(Pλ) but {sk} is not limitable (Pµ). But we always have (P ) ⊆
(Pµ). Therefore sk → s(Pλ) but sk 6→ s(P ).
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