DISCRETE POWER SERIES METHODS

BRUCE WATSON

1. INTRODUCTION

Throughout this paper $\sum_{n=0}^{\infty} a_n$ is a series of real or complex numbers and $\{s_n\}$ represents its associated sequence of partial sums. The sequence $\{p_k\}_0^{\infty}$ is nonnegative and satisfies $\sum_{k=n}^{\infty} p_k > 0$ for each n. In addition $p(x) := \sum_{k=0}^{\infty} p_k x^k$, $p_s(x) := \frac{1}{p(x)} \sum_{k=0}^{\infty} p_k s_k x^k$, and ρ_p denotes the radius of convergence of p(x). The real sequence $\{\lambda_n\}$ satisfies $1 \le \lambda_0 < \lambda_1 < \cdots \rightarrow \infty$.

Definition 1.1. Suppose that $\rho_p > 0$ and $p_s(x)$ exists for each $x \in (0, \rho_p)$. If $\lim_{x \to \rho_p^-} p_s(x) = s$ then we say that $\{s_n\}$ is limitable to s by the power series method (P) and write $s_n \to s$ (P).

When there can be no ambiguity about the underlying sequence $\{p_k\}$, we drop the subscript on the radius of convergence and use ρ instead of ρ_p .

Power series methods have been extensively studied. For example, see [6]. The basic regularity results, although available in [6], were concisely summarized by Borwein in [4] and his result is recalled here.

Theorem 1.1.

(1) If $0 < \rho < \infty$ then (P) is regular if and only if $\sum_{k=0}^{\infty} p_k \rho^k = \infty$. (2) If $\rho = \infty$ then (P) is regular.

For ordinary Abel summability take $p_k = 1$ for all k. Then $p(x) = \frac{1}{1-x}$, $\rho = 1$, and $p_s(x) = (1-x)\sum_{k=0}^{\infty} s_k x^k$. For Borel summability

 $p_k = \frac{1}{k!}$, $p(x) = e^x$, $\rho = \infty$, and $p_s(x) = e^{-x} \sum_{k=0}^{\infty} \frac{s_k}{k!} x^k$. These are two examples of continuous power series methods. Next we define the discrete types.

 Set

$$x_n = \begin{cases} \rho - \frac{1}{\lambda_n} & \text{if } 0 < \rho < \infty, \\ \lambda_n & \text{if } \rho = \infty. \end{cases}$$

Definition 1.2. If $p_s(x_n)$ exists for all n and $\lim_{n\to\infty} p_s(x_n) = s$ then we say that s_n is limitable to s by the discrete power series method (P_{λ}) and write $s_n \to s(P_{\lambda})$.

Discrete methods have been studied recently by Armitage and Maddox in [1] and [2]. Note that (P_{λ}) includes (P) in the sense that $s_n \to s(P)$ implies $s_n \to s(P_{\lambda})$.

Theorem 1.2.

(1) If $0 < \rho < \infty$ then (P_{λ}) is regular if and only if $\sum_{k=0}^{\infty} p_k \rho^k = \infty$. (2) If $\rho = \infty$ then (P_{λ}) is regular.

Proof. Part (2) and one direction of (1) follow immediately from theorem 1.1 and the observation preceeding this theorem. So, assume (P_{λ}) is regular and suppose, as we may, that for some fixed m, $p_m > 0$.

Now,
$$\lim_{n \to \infty} p(x_n) = \sum_{k=0}^{\infty} p_k \rho^k$$
 since, for any N ,
$$\sum_{k=0}^{\infty} p_k \rho^k \ge \sum_{k=0}^{\infty} p_k x_n^k \ge \sum_{k=0}^{N} p_k x_n^k.$$

Hence

$$\sum_{k=0}^{\infty} p_k \rho^k \ge \lim_{n \to \infty} p(x_n) \ge \sum_{k=0}^{N} p_k \rho^k.$$

Define a sequence $\{s_k\}$ by

$$s_k = \begin{cases} 0 & \text{if } k \neq m \\ \frac{1}{p_m} & \text{if } k = m. \end{cases}$$

Then,

$$p_s(x_n) = \frac{1}{p(x_n)} \sum_{k=0}^{\infty} p_k s_k x_n^k$$
$$= \frac{x_n^m}{p(x_n)} \to 0 \text{ as } n \to \infty$$

Therefore $\lim_{n \to \infty} p(x_n) = \infty$ and, hence, $\sum_{k=0}^{\infty} p_k \rho^k = \infty$.

2. Abelian Results

Adopt the notation $E_{\lambda} = \{\lambda_n : n \ge 0\}$. We prove the following result which includes Theorem 1 of [2].

Theorem 2.1. Suppose that (P_{λ}) is regular and that $p_k > 0$ for all $k \ge 0$.

- (1) $P_{\lambda} \subseteq P_{\mu}$ if and only if $E_{\mu} E_{\lambda}$ is finite.
- (2) $P_{\mu} = P_{\lambda}$ if and only if $E_{\mu}\Delta E_{\lambda}$ is finite.

Proof.

It suffices to prove part (1) for then (2) is immediate. Let $\{x_n\}$ be as defined in the previous section and let $\{y_n\}$ be the sequence that corresponds to $\{\mu_n\}$. That is,

$$y_n = \begin{cases} \rho - \frac{1}{\mu_n} & \text{if } 0 < \rho < \infty, \\ \mu_n & \text{if } \rho = \infty. \end{cases}$$

If $E_{\mu} - E_{\lambda}$ is finite then there exists an $N \in \mathbb{N}$ such that $\{y_n : n \ge N\} \subseteq \{x_n : n \in \mathbb{N}\}$. Set $y_n = x_{j_n}$ for $n \ge N$.

Suppose that $s_n \to s(P_{\lambda})$. Then $\lim_{n \to \infty} p_s(x_n) = s$. But we then have $\lim_{n \to \infty} p_s(y_n) = \lim_{n \to \infty} p_s(x_{j_n}) = s$.

For the reverse implication suppose, by way of contradiction, that $P_{\lambda} \subseteq P_{\mu}$ but that $E_{\mu} - E_{\lambda}$ is infinite. Then there exists a subsequence μ' of μ , say $\{\mu_{n_k}\}$ such that $E_{\mu'} \cap E_{\lambda} = \emptyset$. Construct, as we may, a continuous function $\phi: (-\infty, \infty) \to [0, \infty)$ such that $\phi(\lambda_k) = 0$, and $\phi(\mu_{n_k}) = p(y_{n_k})$.

Suppose first that $0 < \rho < \infty$. By a theorem of Carleman (see [5] or [3]) there exists an entire function g such that

$$|g(x) - \phi(x)| < \frac{1}{1+|x|}$$
 for all $x \in \mathbf{R}$.

Set $f(z) = g(\frac{1}{\rho-z})$. Then f is analytic for $|z| < \rho$ so there exists a sequence $\{s_k\}$ such that $f(z) = \sum_{k=0}^{\infty} s_k z^k$ for $|z| < \rho$. Set $b_k = \frac{s_k}{p_k}$ for all $k \ge 0$. Then, for the sequence $\{b_k\}$,

$$|p_s(x_n)| = \frac{1}{p(x_n)} |\sum_{k=0}^{\infty} p_k b_k x_n^k|$$

$$= \frac{1}{p(x_n)} |\sum_{k=0}^{\infty} s_k x_n^k|$$

$$= \frac{1}{p(x_n)} |f(x_n)|$$

$$= \frac{1}{p(x_n)} |g(\lambda_n)|$$

$$= \frac{1}{p(x_n)} |g(\lambda_n) - \phi(\lambda_n)|$$

$$< \frac{1}{p(x_n)} \frac{1}{\lambda_n}$$

$$\to 0 \text{ as } n \to \infty.$$

Hence $b_n \to 0(P_\lambda)$.

On the other hand,

$$\begin{aligned} |p_s(y_{n_k})| &= \frac{1}{p(y_{n_k})} |\sum_{j=0}^{\infty} p_j b_j y_{n_k}^j| \\ &= \frac{1}{p(y_{n_k})} |\sum_{j=0}^{\infty} s_j y_{n_k}^j| \\ &= \frac{1}{p(y_{n_k})} |f(y_{n_k})| \\ &= \frac{1}{p(y_{n_k})} |g(\mu_{n_k})| \\ &\ge \frac{1}{p(y_{n_k})} \{ |\phi(\mu_{n_k})| - |g(\mu_{n_k}) - \phi(\mu_{n_k}) | \} \\ &\ge 1 - \frac{1}{p(y_{n_k})\mu_{n_k}} \to 1 \text{ as } k \to \infty. \end{aligned}$$

Therefore $b_k \not\rightarrow 0(P_\mu)$. This is a contradiction.

Now suppose $\rho = \infty$. In this case, $g(z) = \sum_{k=0}^{\infty} s_k z^k$. With $\{b_k\}$ as above we get,

$$|p_s(x_n)| = \frac{1}{p(x_n)} |\sum_{k=0}^{\infty} p_k b_k x_n^k|$$

$$= \frac{1}{p(x_n)} |g(x_n)|$$

$$= \frac{1}{p(\lambda_n)} |g(\lambda_n) - \phi(\lambda_n)|$$

$$< \frac{1}{p(\lambda_n)} \frac{1}{\lambda_n}$$

$$\to 0 \text{ as } n \to \infty.$$

Hence $b_k \to 0(P_\lambda)$.

But,

$$\begin{aligned} |p_s(y_{n_k})| &= \frac{1}{p(y_{n_k})} |\sum_{j=0}^{\infty} p_j b_j y_{n_k}^j| \\ &= \frac{1}{p(y_{n_k})} |g(y_{n_k})| \\ &= \frac{1}{p(\mu_{n_k})} |g(\mu_{n_k})| \\ &\ge \frac{1}{p(\mu_{n_k})} \{|\phi(\mu_{n_k})| - |g(\mu_{n_k}) - \phi(\mu_{n_k})| \} \\ &\ge 1 - \frac{1}{p(\mu_{n_k})\mu_{n_k}} \to 1 \text{ as } k \to \infty. \end{aligned}$$

Therefore, as previously, $b_k \not\rightarrow 0(P_\mu)$. This completes the proof.

Corollary 2.2. If (P_{λ}) is regular and $p_k > 0$ for all $k \ge 0$, then $(P) \subset$ $(P_{\lambda}).$

Proof.

Proof. Set $\mu_n = \frac{\lambda_n + \lambda_{n+1}}{2}$ for $n \ge 0$. Then $E_{\lambda} \cap E_{\mu} = \emptyset$. Hence we cannot have $(P_{\lambda}) \subseteq (P_{\mu})$. Therefore there exists a sequence $\{s_k\}$ such that $s_k \to s(P_\lambda)$ but $\{s_k\}$ is not limitable (P_μ) . But we always have $(P) \subseteq$ (P_{μ}) . Therefore $s_k \to s(P_{\lambda})$ but $s_k \not\to s(P)$.

References

- [1] D. H. Armitage and I. J. Maddox, A new type of Cesàro mean, Analysis **9**(1989), 195-204.
- [2] D. H. Armitage and I. J. Maddox, Discrete Abel means, Analysis 10(1990), 177-186.
- [3] R. P. Boas, Entire Functions, Academic Press, 1954.
- [4] D. Borwein, On Methods of Summability Based on Power Series, Proc. Royal Soc. Edinburgh, 64(1957), 342-349.
- [5] T. Carleman, Sur un théorème de Weierstrass, Ark. Math. Astr. Fys. **20B**(1927), 1-5.
- [6] G. H. Hardy, *Divergent Series*, Oxford, 1949.

MEMORIAL UNIVERSITY, ST. JOHN'S, NF, CANADA, A1C 5S7.

 $\mathbf{6}$