DISCRETE POWER SERIES METHODS

BRUCE WATSON

1. INTRODUCTION

o0

Throughout this paper Z a, is a series of real or complex num-
n=0

bers and {s,} represents its associated sequence of partial sums. The

oo
sequence {px}¢° is nonnegative and satisfies Z pr > 0 for each n.

k=n
o0 1 o
In addition p(x) = Zpkxk, ps(x) = —= Zpkskzk, and p, de-
k=0 () =
notes the radius of convergence of p(x). The real sequence {\, } satisfies
1< )d< A<+ — o

Definition 1.1. Suppose that p, > 0 and ps(x) ezists for each x €
(0,pp). If lim ps(x) = s then we say that {s,} is limitable to s by the

T—pp

power series method (P) and write s, — s (P).

When there can be no ambiguity about the underlying sequence {py},

we drop the subscript on the radius of convergence and use p instead
of pp.
Power series methods have been extensively studied. For example,

see [6]. The basic regularity results, although available in [6], were

concisely summarized by Borwein in [4] and his result is recalled here.

Theorem 1.1.

(1) If 0 < p < oo then (P) is reqular if and only if Y ppp® = oc.
k=0
(2) If p = oo then (P) is regular.

For ordinary Abel summability take p, = 1 for all k. Then p(z) =
1 oo

T P = 1, and ps(z) = (1 —2)>_ spa”. For Borel summability
-z k=0
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1 o0
pr = 53 pl) = ¢, p = oo, and py(x) = e‘””];)}i’?x’“. These are

two examples of continuous power series methods. Next we define the

discrete types.

Set

— p—ﬁ it 0 < p < o0,
S D if p = o0.

Definition 1.2. If ps(x,) exists for all n and nlirgops(a:n) = s then we
say that s, is limitable to s by the discrete power series method (Py)

and write s, — s(Py).

Discrete methods have been studied recently by Armitage and Mad-
dox in [1] and [2]. Note that (P)) includes (P) in the sense that

sp — s(P) implies s, — s(Py).

Theorem 1.2.

(1) If 0 < p < oo then (Py) is regular if and only if Zpkpk = 0.
k=0
(2) If p = oo then (Py) is regular.

Proof. Part (2) and one direction of (1) follow immediately from theo-
rem 1.1 and the observation preceeding this theorem. So, assume (P))

is regular and suppose, as we may, that for some fixed m, p,, > 0.

o
Now, nh_)rrolop(xn) = ;;)pkpk since, for any N,

[e'e) [e%s) N
k k k
S ook =D el > perr
k=0 k=0 k=0
Hence

o) N
dopp’ > lim p(an) > D ot
k=0 k=0

Define a sequence {s;} by
{o if k£ m
S =

L ifk=m.
Pm
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Then,

ps(xn> = Zpkskxn

Therefore nh_>nolop(xn) = oo and, hence, Zpkpk = 0.
k=0

2. ABELIAN RESULTS

Adopt the notation E5 = {\,: n > 0}. We prove the following result

which includes Theorem 1 of [2].

Theorem 2.1. Suppose that (Py) is reqular and that py, > 0 for all
k> 0.

(1) P\ C P, if and only if E, — E) is finite.

(2) P, = Py if and only if E,AE) is finite.

Proof.
It suffices to prove part (1) for then (2) is immediate. Let {x,} be
as defined in the previous section and let {y,} be the sequence that

corresponds to {y,}. That is,

p— = if0<p< oo,
Yn = Hn
Lhn, if p = 0.
If E,, — E) is finite then there exists an N € N such that {y,: n >

N} C{z,: n e N}. Set y, = xj, forn > N.

Suppose that s, — s(Py). Then Jirgops(a:n) = 5. But we then have
Jim p(yn) = lim pg(z;,) = s.

For the reverse implication suppose, by way of contradiction, that
P, C P, but that E, — E) is infinite. Then there exists a subse-
quence ' of p, say {pn,} such that E, N E, = 0. Construct, as we

may, a continuous function ¢: (—o00,00) — [0,00) such that ¢(\g) =
0, and ¢(fin,) = p(Yn,,)-
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Suppose first that 0 < p < co. By a theorem of Carleman (see [5] or

[3]) there exists an entire function g such that

l9(z) — ¢(2)] <

for all z € R.

1+ |z

1
Set f(z) = g(——). Then f is analytic for |z| < p so there ex-

p—z

ists a sequence {sj} such that f(z) = Y s,z" for [2] < p. Set by =

k=0

E for all k > 0. Then, for the sequence {by},

Pk

Hence b, — 0(Py).

1

()
1
p(7,)

1> prbrak|
k=0

o0
1> spak]
k=0

=

—_
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On the other hand,

s (Yn,. )|

Therefore by 4 0(P,

,). This is a contradiction.

Now suppose p = oo. In this case, g(z

above we get,

ij jy%k|
|Z ]ynk

p(ﬂﬂk =0

[ (i)

p<ynk

p<yn )

1 — =
P(Yn ) b,

el = ——| > byl
(zn) k=0
1
1
B
P(An) An

Hence by — 0(Py).

— 1as k — oo.

Z SkZ

(b(,unk”

With {b;} as
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But,

1 &= .
——[> pibiyl |

Ps(ya)l = P(yni) =5

= o) 19(Yn,.)|

1

= o) 9 (ttn,)|

1
p(,unk)

v

Up(n )| = 19(ttny,) — D(ptn, |}

> ]1]———— —>lask — o0.
p(/”’”k)l’tnk

Therefore, as previously, by # 0(P,). This completes the proof.

Corollary 2.2. If (Py) is reqular and py, > 0 for all k > 0, then (P) C
(Py).

Proof. \ \
Set p, = An ¥ Ant for n > 0. Then E\ N E, = (). Hence we cannot

have (Py) C (P,). Therefore there exists a sequence {s;} such that
sk — s(Py) but {s} is not limitable (P,). But we always have (P) C
(P,). Therefore s, — s(Py) but s, /4 s(P).
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