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Abstract

The development of an efficient computational methodology for transient heat and mass

transfer applications remains challenging in science and engineering. When a solution is lo-

calized on the fraction of a computational domain, an appropriate adaptive mesh method could

minimize computational work for computing the spatial solution. In this paper, we propose

a novel multi-resolution algorithm for solving the transient momentum and energy equations,

where wavelet transforms are used to develop an adaptive mesh. The nonlinear dynamics

between the velocity and temperature fields is modeled by solving the coupled system of

equations simultaneously, where the rate of convergence has been optimized with a nonlin-

ear multi-level methodology so that computational cost is proportional to the number of grid

points. Numerical experiments have exhibited good agreements with benchmark simulation

data although only a fraction of the grid points compared to the reference model has been

used. Clearly, this indicates the optimal performance of the proposed model.
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NOMENCLATURE

ρ density L length scale

ν kinematic viscosity U velocity scale

ν dimension of a Krylov space Kν Krylov space of dimensionν

θ0 reference temperature TR temperature scale

θ temperature g accelaration due to gravity

β thermal expansion coefficient Ra Rayleigh number

κ thermal diffusivity Re Reynolds number

ǫ tolerance Pr Prandtl number

µ reference to a wavelet family µ a real number

u dimensionless velocity vector (u, v) velocity components

P pressure X length of the domain inx-direction

(x, y) coordinates Y length of the domain iny-direction

t dimensionless time ∆t time step

N number of points in a non-adaptive gridN number of points in an adaptive grid

L nonlinear system of equations J Jacobian of a nonlinear system

Superscripts

n discrete time level,n∆t n+ 1 discrete time level,(n+ 1)∆t

k local iteration j level of resolution

Subscripts

2 vector norm max maximum norm
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1 Introduction

The natural convection and the shear driven circulation in abounded domain appear frequently in

many complex industrial applications such as nuclear reactor insulation, ventilation of rooms, solar

energy collection etc. [e.g., see, 10]. The numerical investigation of such convective circulations

often requires a high spatial and temporal resolution because the solution contains localized or in-

termittent structures, or sharp local variations, in whichlocations of these structures may also vary

with time. For such a transient flow simulation, using modernhigh performance computing (HPC)

facilities, one may be able to employ a mesh with extreme highresolution, and there exists a num-

ber of commercial or freely available Computational Fluid Dynamics (CFD) softwares that may

be used for this purpose. Alternatively, using anad-hocerror indicator, an adaptive mesh refine-

ment (AMR) approach was introduced in [4, 5, 6], which can be used to improve the accuracy of a

transient simulation. In [20], such an adaptive mesh methodwas studied for transient heat transfer

applications. In [30], the use of interpolating wavelet transform was studied so that a spatial mesh

can be refined locally at each time step without using anyad-hocerror indicator.

There are two principal drawbacks. First, for ad-dimensional non-adaptive mesh, if the reso-

lution increases by a factor of2 in each direction, the total number of grid pointsN increases by

a factor of2d if the mesh is refined uniformly. Clearly, this approach increases drastically both

the CPU time and the memory. Second, using a locally refined high resolution adaptive mesh, one

may be able to optimize the number of grid pointsN on an adaptive mesh such thatN ≪ N .

However, this approach would require an extremely small time step for using an explicit time in-

tegration scheme because of the Courant-Friedrichs-Lewy (CFL) criterion [20]. Moreover, a fully

implicit method for both the linear and the nonlinear terms of momentum and energy equations

requires matrix-vector multiplications at each time step due to linearization of the nonlinear sys-
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tem, which has a computational cost that is proportional toO(N 2) (e.g.see, [18]). Therefore, the

development of a more powerful numerical method is essential for an optimal use of adaptive mesh

methods for transient simulations of heat transfer applications. Ref [33] used a non-adaptive mesh

to study other aspects of cost effectiveness, such as the pressure-based discretization, for heat and

mass transfer applications. Generally speaking, the nonlinear dynamics of the CFD or heat transfer

problems is an everlasting computational challenge, and advanced methodologies such as adaptive

mesh and multi-scale solvers can be used to improve the performance of a CFD model for heat

transfer application.

In this research, we study the development of a novel approach – the adaptive multi-resolution

methodology (AMR) – for the solution of nonlinear, advection dominated, thermally or shear driven

transient flow problems. We aim to put together benefits of three powerful techniques that have

been evolved independently to the field of CFD. First, to model intermittent spatial features effi-

ciently, an adaptive mesh is constructed from the second-generation wavelet transform of a tran-

sient variable, where the spatial discretization is computed with an adaptive wavelet collocation

method (AWCM) [21, 26]. Second, to adapt in space and time, and to remove the CFL restriction

on time steps, a second-order fully implicit fractional time integration scheme has been studied,

where ideas from the full approximation scheme (FAS) are used for solving the simultaneous sys-

tem of equations iteratively at each time step [27]. Third, some benefits of Jacobian-free Newton-

Krylov method (JFNK) are useful to ensure that the computational complexity remainsO(N ),

whereN is the number of points on the adaptive mesh. Note that we haveusedN for the number

of points on a non-adaptive mesh, andN for that on an adaptive mesh, where usuallyN ≪ N .

We want to develop an adaptive mesh algorithm for simulatinga transient problem such that the

computational cost increases withN only linearly if the mesh is refined locally, where the desired

accuracy will be achieved according to a givena priori error tolerance. Moreover, we want that
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N does not increase linearly if the tolerance for the accuracymeasure is reduced;i.e. the accuracy

is improved. In such an adaptive computational model, the number of grid points on the adapted

mesh indicates the saving of CPU time with respect to calculations on a non-adaptive mesh when

the CPU time is linearly proportional to the number of pointsN . To achieve this goal, instead

of combining three powerful methods,e.g., AWCM, FAS, and JFNK directly, we have considered

only some benefits of each of these methods to develop a new algorithm –AMR – for heat and

mass transfer applications. This paper presents key ingredients of thisAMR approach, and veri-

fies its performance with transient numerical simulations in comparison with data available from

previously published articles.

The set of equations and temporal integration scheme are presented in section§2. In sec-

tion §??, we outline the basic concepts of wavelet based numerical approximation. The proposed

MRA methodology has been presented in§4. Numerical experiments have been summarized in

section§5, where we verify that the CPU time increases approximatelylinearly with the number

of grid pointsN for all examples. Moreover, we have found thatN ≪ N in comparision with

benchmark data for all numerical experiments. Finally, we have summarized the main results in

section§6.

2 Mathematical formulation and temporal integration

2.1 Governing equations

The flow under investigation in this study is governed by the Navier-Stokes equation, and its ther-

modynamic state is described byρ = ρ(p, θ), where the thermodynamic variables are density(ρ),

pressure(p), and temperature(θ). The Boussinesq assumption has been adopted. First, the depen-

dence of density(ρ) on pressure(p) has been neglected;i.e.ρ 6= ρ(p). Secondly, the dependence of
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density on temperature has been approximated by

ρ(θ) = ρ(θ0)[1 − β(θ − θ0)],

whereβ is the coefficient of thermal expansion. The governing system of equations in dimension-

less variables include the following PDEs:

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∇P +

√

Pr

Ra
∇2u + γθk̂, (2)

∂θ

∂t
+ u · ∇θ =

1√
PrRa

∇2θ. (3)

In the above system, characteristic scales for length, velocity, and temperature areL, U , andTR

respectively. The dimensionless numberγ = 0 corresponds to a shear driven flow , andγ = 1

corresponds to a thermally driven flow, whereU =
√
gβLTR. The Prandtl and Rayleigh numbers

are, respectively, defined by

Pr =
ν

κ
, andRa =

gβL3TR

νκ
,

which gives a Reynolds number

Re =

√

gβL3TR

ν
=
UL

ν
with Re2 = Ra/Pr.

Scientific journals publish a number of articles based on thesystem (1-3), which is a fundamental

mathematical model for heat and mass transfer applications. The proposed methodology is thus

tested by solving these equations.
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Let us now present necessary initial and boundary conditions for simulating a shear driven as

well as a thermally driven circulation in a bounded domain.

2.1.1 Conditions and parameters for a shear driven flow

The set of equations (1-2) withγ = 0 governs a shear-driven, incompressible flow inΩ̄ = Ω∪ ∂Ω,

where the temperature equation (3) is excluded from the numerical solution procedure. Here,∂Ω

is the boundary of the two-dimensional cavityΩ = (0,X ) × (0,Y). The initial and boundary

conditions are given by

(initial condition)

(u, v) = (0, 0) ∀(x, y) ∈ (0,X ) × (0,Y) at t = 0

(boundary conditions)

(u, v) = (V, 0) ∀x ∈ [0,X ], y = Y , at t ≥ 0 (top wall)

(u, v) = (0, 0) ∀x ∈ [0,X ], y = 0, at t ≥ 0 (bottom wall)

(u, v) = (0, 0) ∀y ∈ [0,Y ], x = 0, x = X , at t ≥ 0 (side walls)







(4)

These conditions are used in [12] withX = 1 = Y andV = 1, which serves as the reference

model in section§5.2. Since the temperature equation is excluded from the system, we use the

relationshipRe2 = Ra/Pr, and hence,Re is the only dimensionless parameter that governs the

flow.

2.1.2 Conditions and parameters for a thermally driven flow

The set of equations (1-3) withγ = 1 governs a thermally-driven, two-dimensional natural con-

vection flow in a cavity:Ω̄ = Ω ∪ ∂Ω. The initial and boundary conditions for the velocity are
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given by (4) withV = 0, and that for the temperature field are given by

(initial condition)

θ = 0 ∀(x, y) ∈ (0,X ) × (0,Y) at t = 0

(boundary conditions)

θ = θ0 ∀y ∈ [0,Y ], x = 0, at t ≥ 0 (left wall)

θ = θ1 ∀y ∈ [0,Y ], x = X , at t ≥ 0 (right wall)

∂θ
∂y

= 0 ∀x ∈ [0,X ], y = 0, y = Y , at t ≥ 0 (top & bottom walls)







(5)

These conditions are used in [19] withθ0 = 0.5, θ1 = −0.5, Pr = 0.71, and103 ≤ Ra ≤ 105.

2.2 Temporal integration

A fractional step time marching method - also known as the projection method - was proposed

in [8] for solving eqs. (1-2), where at each time step an auxiliary or intermediate velocity is ob-

tained from (2) and is updated such that eq.(1) is satisfied. In ref. [8], the projection method

was implemented on a collocated or regular grid. Alternatively, the method of Harlow & Welch

(1965) [15] - also known as the MAC method - is a commonly used algorithm in CFD applications

that employs a staggered grid. Using the Chorin’s projection method (CPM) [8], a fully implicit,

second order time integration scheme for (1-3) takes the following form

∇ · un+1 = 0, (6)

un+1 − un

∆t
+

1

2
(un+1·∇·un+1+un·∇·un) = −∇P n+1+

√

Pr

4Ra
∇2(un+1+un)+

γk̂

2
(θn+1+θn)

(7)

θn+1 − θn

∆t
+

1

2
(un+1 · ∇θn+1 + un · ∇θn) =

√

1

4RaPr
∇2(θn+1 + θn). (8)
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In this formulation (6-8), the nonlinear dynamics between the velocityu and the temperatureθ are

calculated simultaneously, which requires an efficient iterative method. The most common practice

would solve (6-7), in the first stage, forun+1 using either a Newton or Picard type iteration, and

then (8), in the second stage, forθn+1, which becomes a linear system. The present solution method

is now outlined.

In the first of the fractional time step, the simultaneous system of PDEs are written, using the

symbolu = [u, θ]T , as

−A∇2u+ u · ∇u+
2

∆t
u = A∇2un − un · ∇un +

2

∆t
un, (9)

where

A =







√
Pr
Ra

0

0
√

1

PrRa






,

u = [u, θ]T represents the solution at a fractional time step, andun = [un, θn]T represents the

solution at the previous time step. The coupled nonlinear system (9) takes the following general

form

L(u) = f (10)

where the nonlinear operatorL and the functionf represent the left hand and the right hand side

of (9) respectively. The system (10) retains the simultaneous nonlinear dependence of the velocity

and temperature within a fractional time step. In [30], a similar fractional time stepping was used,

where the velocityun+1 was obtained with a Picard’s type linearization, and the temperature was

solved after the velocity has been computed, thereby ignoring the non-linearly coupled dynam-

ics. In contrast, the present development proposes a fast numerical methodology for solving the

simultaneous system of equations (10).
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The time evolution of the temperature fieldθn+1 = θ is obtained from (10). However, the same

for the velocity field requires additional step;un+1 = u−∆t∇P n+1 such that∇ ·un+1 = 0. This

step accounts for the effect of the pressure gradient force such that eq. (1) is satisfied at each time

step, thereby requiring the solution of a Poisson equation

∇2P n+1 =
1

∆t
∇ · u. (11)

In the present implementation of the CPM algorithm, the nonlinear system (10) of Helmholtz

equations and the elliptic Poisson equation (11) are solvedat each time step, where the boundary

conditions for (11) are Neumann type:∇P n+1 · n̂ = u · n̂, and that for (10) are Dirichlet type.

In order to optimize the rate of convergence and the computational cost, we have developed a

multi-resolution methodology that is now outlined briefly.

3 A wavelet based numerical methodology

Recently, wavelet-based methods have appeared in a number of research areas as a dynamically

adaptive numerical method [2, 9, 13, 16, 24, 30]. Wavelets can be classified into two cate-

gories. The first-generation wavelets have difficulties in dealing with non-periodic boundary con-

ditions [e.g.see, 3]. However, this limitation has been resolved with theintroduction of the second-

generation wavelet theory in [23]. The recent developmentsof wavelet methods for CFD applica-

tions have been reviewed in [21]. A second-generation adaptive wavelet collocation method (AWCM)

for time dependent PDEs was proposed in [25], which was extended to solve two- and three-

dimensional elliptic problems [26]. In [1, 2, 17], the 2D vorticity equation was solved in the

simultaneous space-time domain, assuming the time variable as if another spatial direction, using

the second-generation AWCM. To the best of authors’ knowledge, the benefits of wavelet-based
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numerical methods have not been fully realized in the area ofheat and mass transfer application.

In [29, 30, 31, 32], the incompressible Navier-Stokes equations and the temperature equations were

solved using a first-generation interpolating wavelet method, where the temperature field and the

velocity field were computed in two steps using a Bi-Conjugate Gradient STABilized (BiCGSTAB)

algorithm. This algorithm requires the linearization of the nonlinear system, and does not take full

advantages of the multi-level proprieties of wavelets. In the following section, the wavelet method

for approximating a given function has been presented.

3.1 The wavelet collocation method

In the present development, second-generation wavelets are constructed on ad-dimensional grid

Gj = {xj
k
∈ Ω : k ∈ Kj, j ∈ J, x

j−1

2k
= x

j
k
}

using the lifting scheme, e.g. see [22, 26] for details. Here, a functionu(x) is approximated by

uj
ǫ(x) =

∑

k∈Kj0

cj0
k
ϕj0

k
(x) +

j−1
∑

l=j0

2d−1∑

µ=1

∑

k ∈ Kµ,l

|d
µ,l
k

|

||u
j
ǫ||2

≥ ǫ

dµ,l
k
ψµ,l

k
(x), (12)

whereGj0 is an arbitrary coarse grid,Gj is the desired fine grid,Kj0 andKµ,j are sets of indices

associated with the gridGj , andd = [cj0
k
, dµ,l

k
](j0 ≤ l ≤ j−1, 1 ≤ µ ≤ 2d−1) denote the wavelet

coefficients at levelj [3, 26].

Let c = [cj
k
] denote the numerical values of the functionu(x) on a gridGj . In the lifting

scheme,c is separated into an even or coarse data associated on the grid Gj−1 and a odd or detail

data on those grid points ofGj which do not belong toGj−1. Odd values are then predicted from
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even values, and even values are updated using predicted oddvalues. This is done recursively,

starting from a fine gridGj until a coarse gridGj0 is reached. The process transforms a given

function evaluationc into its wavelet transformd. Symbolically, we writed = Wc andc = W
−1d,

whereW andW
−1 are forward and inverse wavelet transform operators. Neither W nor W

−1 are

formed explicitly, but these transforms are computing using onlyO(N) operations - thanks to the

lifting scheme.

WhenGj is a uniformly refined dyadic grid, there are a total ofN = (2j + 1)d collocation

points. However, only a fraction of these points are associated with the largestN wavelet coeffi-

cients,|dµ,j
k
| ≥ ǫ||ujǫ

ǫ ||2, where eq. (12) provides the bestN -term approximationuj
ǫ(x). Such an

approximation does not oscillate at a frequency or wave number that is larger than2j [9]. In other

words, the maximum wave number for the approximation (12) is2j , which is same as the maximum

wave number for a Fourier spectral collocation method on thegridGj . Hence, the adaptive wavelet

approximation (12) retains the same wave number truncationas what a Fourier spectral method

would do on the gridGj. If u(x) represents a property of a fluid motion that has localized spatial

structures, we can haveN ≪ N , which is one well-known advantage of wavelet based meth-

ods over spectral methods. The computational complexity ofthe present wavelet method, using

lifted interpolating bi-orthogonal wavelets, isO(N ), which was verified previously, for example

see, [26].

All spatial derivatives in eq. (10) and (11) are calculated using a weighted residual collocation

method such that
∫

R(x)δ(x− xj
k)dx = 0,

where the residual is defined byR(x) := Lu(x)−Luj
ǫ(x), andδ(x) is the dirac delta function [e.g.

see 1]. Then, following [1], we haveLu(xj
k) = DW

−1d, whereD is the resulting differentiation
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matrix. First,d is obtained by taking the forward wavelet transform of a given c, and then the in-

verse wavelet transform ofd at each levelj recursively results into a polynomial representation of

uj
ǫ, which is differentiated to find derivatives. The computational cost of this approach is approxi-

mately equal to that of calculating the wavelet coefficients, where neitherD nor W
−1 is explicitly

formed, due to the lifting scheme. It can also be shown that the maximum error of calculating

q-th order derivative ofu(x) is O(ǫ1−q/p), wherep is the order of the polynomial that is used in

computing wavelet transform [e.g. 26, 1].

In the present work, an adaptive mesh is constructed recursively, starting from the coarsest grid

Gj0, and extending it to the desired finest levelj such that only those grid points that are necessary

to evaluate the approximation (12) are used for a simulation. A details of the mesh generation

process is described in [26]. The system of nonlinear equations (10) and elliptic equation (11)

are discretized on the adaptive mesh using a method that has been summarized above, without

theoretical details, and the readers are referred to the work of [26, 1]. In this research, a multi-

resolution algorithm has been proposed for solving (10) and(11).

4 A multi-resolution method for nonlinear system

A multi-resolution or multi-grid solution method transfers the solution from a fine to a coarse

resolution, and vice-versa. The present method employs an adaptive mesh, and the grid transfer

process is based on the wavelet transform coefficientsd.
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4.1 Grid transfer operations

Using a wavelet transformdj on a gridGj, the fine-to-coarse grid transferRj is denoted by

uj−1 = Rj−1uj, (13)

and defined by

uj−1(x) =
∑

k∈Kj0

cj0
k
ϕj0

k
(x) +

j−2
∑

l=j0

2d−1∑

µ=1

∑

k ∈ Kµ,l

dµ,l
k
ψµ,l

k
(x), |dµ,l

k
| ≥ ǫ||uj

ǫ||2 (14)

which is obtained by discarding the coefficientsdµ,j−1

k , k ∈ Kµ,j−1, µ = 1 . . . 2d − 1 from eq.(12).

Similarly, the coarse-to-fine grid wavelet projectionRj is denoted by

uj = Rjuj−1, (15)

which is the exact inverse of (13) in the way that the discarded wavelets are now included to

obtain (15). These discarded wavelets may not be available in practice, and following [3, Ch.7], we

will use the predict wavelets to define the coarse-to-fine grid transfer process (15) approximately

by

uj(x) =
∑

k∈Kj0

cj0
k
ϕj0

k
(x) +

j−2
∑

l=j0

2d−1∑

µ=1

∑

k ∈ Kµ,l

dµ,l
k
ψµ,l

k
(x) +

2d−1∑

µ=1

∑

k∈Kµ,j−1

d̃µ,j−1

k
ψµ,j−1

k
(x), (16)

whered̃µ,j−1

k
are approximations to discarded wavelet coefficients.

Note that the classical multigrid algorithm for a linear elliptic PDE employs either a trivial

restriction or a weighted restriction on a uniformly refinedgrid. A trivial restriction implies that
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[Rj−1uj]j−1

2k = uj
k because the multi-level grids are nestedGj−1 ⊂ Gj such thatxj−1

2k = xj
k.

A weighted mean of neighboring values is used to construct a weighted restriction, where the

choice of weights is open, but one may consider that the restriction is an adjoint mapping of the

prolongation, e.g. see [14]. It is a common practice in multigrid theory that weighted means

are used to construct restriction and prolongation operators, but their construction needs special

treatment if an adaptive mesh is used.

The present development differs from a classical multi-grid algorithm, and implements the

grid transfer operations on an adaptive mesh, using lifted interpolating wavelet transform, where

interpolating polynomials of order̃p and that of orderp are used for coarse-to-fine and fine-to-

coarse transfers respectively. In all numerical verifications, we have usedp = p̃ = 6. According to

the approximation theory, the wavelet transform provides with an accurate represent of a function

at coarse or fine resolution, which provides a more appropriate construction for these grid transfer

operations rather than using anad-hocweighted mean that is commonly in multi-grid theory.

4.2 A multi-resolution algorithm

Let L(uj) denote the approximation ofL(u) on the gridGj, whereL is a nonlinear advection-

diffusion operator - such as the left hand side of (10), and let us write the discrete form

L(uj) = f j, (17)

wheref j is an approximation to the right hand side of eq. (10). An easier problem

L(uj−1) = gj−1, (18)
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at a coarser resolution,i.e. on the gridGj−1, is now solved with appropriate definition ofgj−1. The

current fine resolution approximationuk,j is updated by

uk+1,j = uk,j + Rj (uj−1 −Rj−1uk,j)
︸ ︷︷ ︸

error

,

where the error is calculated at the coarser resolution, andis transferred to the fine resolution. Note,

the calculation of error at a coarser resolution is a key point in saving CPU time. The process is

continued until the residual

rj = f j − Lj(uk,j) (19)

is minimized by a given tolerance. The right hand side of eq. (18),gj−1, can be formed by transfer-

ring the current residual,rj, and the approximate solution,uk,j, to the coarser resolution according

to

gj−1 = Rj−1rj + L(Rj−1uk,j).

If gj−1 is formed this way, a uniformly refined grid is used, and weighted means are used to

constructRj , this multi-resolution algorithm (MRA) takes the similar form of a multi-grid full-

approximation scheme - as described in [28]. However, such aclassical multigrid full approxi-

mation scheme is not optimal for solving the advection-diffusion problem (17) because a substan-

tial amount of computational work is needed for improving the rate of congvergence,e.g., using

anisotropic coarsening and refinement. In the present development, the adaptive mesh and wavelet

transform as well as the following development are novel contribution of thisMRA with respect to

multi-grid theory, where anisotropic coarening/refinement has not been used.

In order to improve the rate of convergence for the aboveMRA, a process - known as relax-

ation or smoothing - can be employed to improve the approximation uk,j before transferring to
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the coarser resolution, as well as to improveuk+1,j. A relaxation method aims to remove high

frequency oscillation of the error from an approximate solution. A goal of the present work is

the development of an efficient relaxation method for heat and mass transfer applications, where

a nonlinear advection-diffusion problem is solved. The rate of convergence of the presentMRA

solver depends also on the relaxation method that solves eq.(17) approximately [e.g., 27].

To see how a relaxation method for a nonlinear problem introduces a high computational over-

head, we can re-write eq. (17) in the following compact form:

f j(u) = 0. (20)

Since this is a nonlinear system, an improved approximate solutionuk,j +sk is obtained by solving

the linear problemJ (uk,j)sk = −f j(uk,j) approximately, whereJ is the Jacobian of the nonlinear

system (20) andsk is theN ×1 error vector that can be thought as a search direction. In addition to

the construction ofJ , a numerical construction ofJ (uk,j)sk is a matrix-vector product, which has

a computational cost that scales likeO(N 2), whereN is the number of grid points. Clearly, the

computational overhead is extreme even with an adaptive mesh technique. The solution procedure

will be benefited greatly if one computesJ (uk,j)sk usingO(N ) complexity as well as finds a

search directionsk such that the residual (19) is reduced by a significant amount.

In order to reduce theO(N 2) complexity toO(N ), let us consider the Frechet derivative of

f j(u), which is a fundamental Applied Mathematical technique. According to the mathematical

definition of the Frechet derivative, we can approximate theaction of the JacobianJ along the

search directionsk in the form of a matrix-vector product, such that

J (uk,j)sk ≈ f j(uk,j + ηsk) − f j(uk,j)

η
(21)
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for some small real numberη [18]. Clearly, the right hand side of (21) can be evaluated withO(N )

complexity when the cost of computingf j scales likeO(N ). Hence, in the above development,

the problem is linearized approximately withO(N ) complexity.

Let us now develop a line search method to relax (17)i.e. to reduce non-smooth error from

a given approximate solutionuk,j such that||f j(uk,j)||2 is minimized by some factor. Most line

search algorithms require to find the search directionsk to be a descent direction, satisfying

||f j(uk,j + αksk)||2 < ||f j(uk,j)||2,

where the positive scalarαk is the step length. In the present development, the vectorsk is com-

puted from the linear combination ofν independent vectors, and hence, without loss of generality,

we can normalize the step lengthαk = 1. Here,sk can be determined, using a Krylov subspace,

Kν(J , f j(uk,j)) such that

min
sk∈Kν

||J (uk,j)sk + f(uk,j)||,

whereν is the dimension of the Krylov sub-spaceKν. For interested readers, we refer to [Ch 7.3

of 28] for a detailed mathematical analysis of this Krylov method.

In the JFNK solver,e.g. see [18], eq. (21) optimizes the computational complexity,and nor-

mally, a non-adaptive mesh is used. Moreover,ν will be as large asN unless an appropriate

problem dependent pre-conditioning matrix is found, whichis a major drawback for the JFNK

method. In our development,ν is small, usually has a value from3 to 5, because the above Krylov

method is used only in the relaxation sweep of the proposed multi-resolution algorithm.
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4.3 The implementation on an adaptive mesh

According to eq. (12), if an intermittent functionu(x) is sampled on a gridGj , we can represent

this function using only a fraction of the wavelet coefficients dj. In practice, solving a transient

problem on the gridGj and using the wavelet transform of this solution do not bringany advan-

tage to simulating a flow. Instead, we need to develop an algorithm that finds the fraction of the

coefficients,i.e. the fraction of the gridGj without calculating the flow on the entire grid. For this

reason, one cannot apply the wavelet method directly to simulate a fluid flow.

Let us now summarize the implementation of the proposedMRA on an adaptive mesh that is

obtained recursively starting from a given coarse gridGj0 , and updating it dynamically as the flow

exhibits localized features.

1. Start with an initial guessuk,j for the solution of (17) on the present levelj.

2. Performγ steps ofMRA iterations on the current level. The choice of the parameterγ = 1

results in aV-cycle andγ = 2 results in aW-cycle iterations (e.g. see, [27] for a details

of multi-gridV- andW-cycle iterations).

3. Perform a second-generation lifted interpolating forward wavelet transform and analyze the

one-to-one mapping between the wavelet coefficientsd = [dj
k] and the grid pointsx = [xj

k].

All grid points that are associated with large wavelet coefficientsi.e. |dj
k|/||uj||2 ≥ ǫ are

marked for mesh refinement asactive points at the present level. Delete all other grid

points.

4. If there are no points for refinement, go to step 2, otherwise, continue onto the next step.

5. Refine the mesh, and from the next level grid, consider onlythose collocation points that

belong to a suitably definedneighbors of the active grid points at the present level [25].
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6. The set ofactive points andneighbors constitute the next level mesh. Ensure that

all active points from the present level are included to the next level approximate mesh. This

criterion is necessary to ensure that adaptive grids are also nested so that wavelet decompo-

sition and reconstruction are stable.

7. Use the grid transfer operation (16) to obtain an approximate solution on the next level mesh.

Go to step 2.

8. If convergence criterion is satisfied, stop the iterationprocess.

In the following section, the proposed method is verified by numerical examples.

5 Numerical experiments

5.1 Verification for error and rate of convergence

In order to demonstrate the accuracy and flexibility of the proposed method, we first consider the

numerical solution of the Poisson-Boltzmann equation

−∇2u+ a sinh(bu) = f, (22)

wherea and b are constants. The right hand functionf and Dirichlet boundary conditions are

chosen such that the solution of (22) is given by

u(x, y) = α1 exp(−(x2 + y2)/(2µ)) − 0.5 sin(πx) sin(πy),

whereα1 = 1.0, a = 1.0, b = 1.0, andµ = 10−3 have been used. The problem can be considered

as a toy model for the purpose of numerical verification. Fig.1(a) presents the solution of (22) at
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various resolutions17×17, 33×33, 65×65, 257×257, 513×513, and1025×1025, showing that

the solution is converged iteratively if the resolution increases. Fig. 1(b) presents the corresponding

adapted grids, verifying that grid points are concentratednear the point(0, 0), where the solution

has a sharp gradient. These plots in Figs (1(a)-1(b)) demonstrate clearly that the approximation

error is reduced, and the mesh is refined only locally if the resolution increases.

For this simulation, the resolution of a uniform gridGj is given by(mx2
j−1+1)×(my2

j−1+1),

where usingmx = my = 2, the coarsest gridG1 has a resolution3 × 3 or 9 grid points, the finest

grid G10 has a resolution1 025 × 1 025 or 1 050 625 grid points, and a toleranceǫ = 10−4 is used

to obtain the finest gridG10 according to the algorithm that has been presented in§4.3. Here

only 12 473 points of the uniform gridG10 is used for the simulation. The number of points in the

adapted gridG10 is 12 473, which is about84-times less than1 025×1 025 or1 050 625 points in the

non-adapted grid. Moreover, the number of points12 473 is equivalent to a resolution112 × 112,

which means that the resolution has been increased by about afactor of8 or 9 in this case without

increasing the global number of grid points. This experiment exhibits clearly the advantage of

adaptive mesh refinement approach.

As summarized in table 1, numerical experiments with increasing the resolution each time by

a factor of2, where the multi-level grids vary from a17 × 17 resolution to1 025 × 1 025 reso-

lution, indicates that the rate of convergence is independent of the resolution. Using numerical

experiments for10−1 ≤ ǫ ≤ 10−6, we have calculated the error||u(x, y) − uj
ǫ(x, y)||2 and the

number of pointsN , whereu(x, y) stands for the exact solution anduj
ǫ(x, y) stands for the numer-

ical solution for each value ofǫ. Fig. 2(a) shows that the error isO(ǫ) and Fig. 2(b) shows that the

error isO(N−3). In other words, the toleranceǫ controls the error linearly, and a50% reduction

of the error increasesN by only about25%. In Fig. 2(c) the CPU[s] time is plotted againstN ,

which verifiesO(N ) complexity such that the computational cost scales linearly with the number
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of computational degrees of freedomN .

The above numerical test verifies the performance of the proposed algorithm.

5.2 Numerical simulation of a shear-driven flow

A shear-driven cavity flow, where one wall of the cavity movesat a constant velocity on its own

plane, exhibits a boundary layer of thickness,δ ∝ Re−1/2, and is a classical test problem for the

assessment of CFD codes. In order to verify the accuracy of the present model, where a fine mesh is

used only in the region of boundary layer, comparison results are summarized in this section. The

initial and boundary conditions corresponding to a shear-driven 2D flow in a cavity:Ω̄ = Ω ∪ ∂Ω

are given by (4).

5.2.1 Comparison with reference solutions

In Fig. 3, the simulated velocityu(0.5, y) is compared with data presented in [7] and [12], showing

a good agreement between the present and reference solutions. Note that [7] used a Chebyshev

collocation method, employing25 600 grid points atRe = 1 000, and [12] used a multigrid method

on uniformly refined multi-level meshes, employing65 536 grid points atRe = 1 000 (as well as

various other values ofRe). Using a toleranceǫ = 10−3, the present model requires only3 416

grid points, which is about13% or5% of the grid points required by [7] and [12] respectively, but

retains an accuracy that is comparable to these reference simulations. For the present simulation,

the number of grid points also increases to10 275 and 25 434 if the tolerance is decreased to

ǫ = 10−4 and10−6 respectively, where the later is about the same as that of [7]. Fig 4 compares

velocity u(0.5, y) for a range of tolerance values10−2 ≤ ǫ ≤ 10−6. This numerical experiment

exhibits that the proposed model reduces the computationalwork units by reducing drastically

the number of grid points without introducing significant error in comparison with numerical data
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from [12, 7].

A principal objective of the present study includes a space and time adaptivity such that the

time step,∆t is not restricted by the CFL condition. In order to assess thecost and error of the

time integration scheme in such an adaptive mesh CFD model, let us define a CFL number by

CFLmax =
max(||u||) max(∆t)

min(∆x)
,

where CFLmax = 1 means thatmax(∆t) = min(∆x) becausemax(||u||) = 1 for this simulation.

Since an explicit time integration scheme requires CFLmax ≤ 1, the time step,∆t ≤ min(∆x),

will be extremely small if the mesh is refined locally in the region of sharp change of the solution.

Here,∆t is adapted dynamically so that a given CFLmax is satisfied. The experiment with various

CFLmax values between1 and6, as presented in Fig. 5, shows that the time step∆t can be adjusted

according to a desired accuracy without being restricted bythe CFL number, which is a distinct

feature of the proposed model with respect to classical CFD techniques. Fig. 5 shows clearly a

6 times larger CFL number retains the accuracy within the tolerance limit, which is clear from a

comparison of computedu(0.5, y) between Figs. 3-5.

These comparison tests reveal good agreement with reference solutions as well as confirms

the accuracy of the present solution although a sparse grid is used with a large∆t and large CFL

number.

5.3 Flow in a differentially heated cavity

We have now simulated a flow in a differentially heated cavityfor two main reasons. First, this

is a prototypical problem for verifying a CFD algorithm, which is relevant to many industrial ap-

plications. Secondly, the flow includes the gravitational effects, where density variation occurs in
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the vertical direction due to thermal effect. This flow is either driven by only a thermal gradient

- known as the natural convection or driven by both a shear anda thermal gradient - known as

the mixed convection. Results for a natural convection flow is presented. The characteristic di-

mensionless parameter is the Rayleigh number,Ra, where the flow remains steady or laminar if

Ra ≤ Racritical, but transitions to turbulence occur otherwise. This characteristics of the flow makes

it a benchmark candidate for understanding the convergenceof a new numerical algorithm.

The set of equations (1-3) withγ = 1 governs a thermally-driven, two-dimensional natural

convection flow in a cavity:̄Ω = Ω ∪ ∂Ω. The initial and boundary conditions for the velocity are

given by (4) withV = 0, and that for the temperature field are given by (5). A series of numer-

ical simulations have been performed for103 ≤ Ra ≤ 109 using the same initial and boundary

conditions. These numerical simulations agree with the data available from [19].

5.3.1 Results

The temperature distributions for103 ≤ Ra ≤ 108 are presented in Fig. 6, where we see that the

region of hot or cold fluid is concentrated near the walls asRa increases. In other words, strong

temperature gradient occurs near the walls at highRa. This development of the thermal boundary

layer makes the computation of such a flow a challenging task.As described in [19], a uniform

mesh that is sufficient to calculate the flow atRa = 103 will become insufficient ifRa increases

because the narrow boundary layer at highRa requires a fine mesh. Looking at the temperature

distribution atRa = 108 in Fig. 6, one sees clearly that the mesh needs to be refined locally only

near all four walls of the cavity, which is not necessary awayfrom the walls. According to eq. (12)

and the algorithm as described in§4.3, the presentMRA identifies the region dynamically, where a

large gradient or boundary layer occurs, and determines thenumerical resolution that is necessary

to resolve such a boundary layer. Our numerical experimentswith a tolerance,ǫ = 5× 10−3, show
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that the maximum necessary resolution is128×128 for 103 ≤ Ra ≤ 107, 256×256 for Ra = 108,

and515 × 512 for Ra = 109. However, atRa = 109, the present simulation has used only11 308

points, which is about4% compared to the uniform mesh at the resolution512 × 512.

To see the growth of the boundary layer near the side walls, the velocityv(x, 0.5) and the

temperatureθ(x, 0.5) are presented in Figs 7(a), 7(b) respectively for increasing values ofRa.

These results are compared with the data presented in [19, e.g. Fig.3], and we see a very good

qualitative agreement. The scaling for the velocity field for the present model differs from that

for the model of [19]. Hence, a rescaling of the model output shows that the velocity profiles in

Fig. 7(a) has a good quantitative agreement with those presented in [19].

5.4 Heat island circulation

A heat island circulation is a typical horizontal convection driven by the differential surface heating

in the atmosphere. In order to include the stratification effect, the temperature field in eq. (3) is

decomposed intoθ(x, y, t) = θ0+θ̄(y)+θ
′(x, y, t), where gravitational force acts along the positive

y direction. This decomposition is equivalent to adding the term− 1

Fr2v on the right hand side of

eq. (3) [11], where the Froude number is defined byFr = U

L
q

g
θ0

∂θ̄
∂y

. Hence, the choiceFr = ∞

keeps the eq. (3) in its original form, and the choiceFr = 1 makes it equivalent to the model that

was presented in [11]. Using this modification to the governing equations, an idealized heat island

circulation in a vertical plane has been simulated, where the initial localized heat source att = 0

is on the bottom horizontal wall - as shown in Fig.8(a).

The time evolutions att = 60 of the initial temperatureθ(x, y, 0) forRa = 103, 104, and105 are

presented in Fig. 8(b-d). The pattern of the rising plume indicate that the vertical propagation of the

plume is reduced ifRa is increased, but the plume remains symmetric with respect to the horizontal

distancex measured from the center of the heat source. This pattern is atypical characteristic

25



of horizontal convection, which means that the numerical model has simulated a flow that has

good qualitative agreement with an actual heat island circulation. In Fig.9(a), we have presented

the temperature profileθ(x, 0.5, 60) out of three temperature data presented in Fig. 8(b-d), which

shows that the maximum temperature along the liney = 0.5 is reduced whenRa is increased. The

vertical temperature profilesθ(0.5, y, 60) in Fig. 9(b) exhibit that the temperature decays rapidly

to zero along the vertical linex = 0, where(0, 0) is center of the heat source, and the rate of this

decay is faster with higher values ofRa. This decay is associated with the stratification. To see this

let us assume that the temperature field is spatially homogeneous, which simplifies the temperature

equation (3) to the form

∂θ

∂t
= − 1

Fr2
v.

Clearly, the effect of the stratification term is to decay thetemperatureθ in the region of positive

vertical velocity,v. The horizontal profile of the vertical velocityv(x, 0.5, 60) in Fig. 9(c) shows

that the vertical convection is increasingly localized above the heat source with increasingRa. The

narrow region of positivev is accompanied by narrow regions of negativev, which means that the

region where the temperature decays is also accompanied by regions of temperature increase. This

explains the wiggly profile forRa = 105 in Fig. 9(b).

5.4.1 Comparison with reference results

In [11], an idealized heat islan circulation was investigated numerically, where a fluid that was

confined in a 2D region was heated with a localized heat sourceon the bottom boundary. The nu-

merical simulation in [11] required an extended domain in order to accommodate the horizontally

convective circulation. In contrast, the present simulation used a relatively small domain, where

horizontal convection is modelled numerically using a Neumann type boundary conditions. When
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Fig.9(a), 9(b), and Fig.9(c) of the present simulation are compared visually with Figs.10(a), 9(a),

and10(b) respectively from the ref. [11], one finds a good agreement despite both simulations are

done in different computational domain with different boundary conditions and different numerical

techniques. This comparison verifies that our numerical model simulates a heat island circulation

as accurate as the data presented in [11].

6 Summary

This paper has explored the development of an efficient CFD model for transient heat and mass

transfer applications using an adaptive mesh approach. A multi-resolution algorithm has been pro-

posed that explores some of the recent discoveries on advanced computational algorithms. Com-

prehensive numerical experiments have been conducted for the verification of the algorithm’s per-

formance. The numerical accuracy has been verified in two stages. First, a nonlinear mathematical

problem has been solved for which the exact solution is known. This verifies the rate of conver-

gence for the iterative method, accuracy of the global numerical solution, and the computational

time needed for a high resolution simulation. Second, transient simulations of a shear driven flow,

a natural convection, and a heat island circulation have been compared with previously published

numerical data. Good quantitative agreements with these data confirm the performance of this

novel computational approach.

The proposedMRA algorithm shares the benefits from some advanced techniquesthat are

known to Applied Mathematics and Computational Physics research community. For example,

wavelet based techniques provide an efficient method – knownas the nonlinear approximation – so

that the most significant proportion of the energy under a localized function can be computed using

only a small number of grid points without loosing accuracy.To the CFD research community, the
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need for anisotropic coarsening and refinement has discouraged for not using the full approxima-

tion scheme. To the Computational Physics research community, the Jacobian-free Newton-Krylov

methodology is a powerful algorithm for simulating multi-physics problems, where a problem spe-

cific pre-conditioner matrix must be designed for each simulation. Instead of using the FAS and

JFNK solver directly, the concept from these algorithms aretaken so that a new algorithm can be

designed.

The development throughout this research brings novel ideas to scientists whose research in-

terest lie in the numerical simulation of heat and mass transfer problems. The potential future

development includes extension to three-dimensional transient problems, for which a parallel ver-

sion of this code must be developed. This work is currently underway.
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Grid # ofMRA iteration Residual
17 × 17 19 8.06 × 10−9

33 × 33 23 1.66 × 10−8

65 × 65 23 1.27 × 10−8

129 × 129 22 6.66 × 10−9

257 × 257 22 6.32 × 10−9

513 × 513 22 6.24 × 10−9

1025 × 1025 22 6.08 × 10−9

Table 1: The rate of convergence of theMRA solver is tested by solving (22). The algorithm takes
about the same number of iterations to reduce the residual norm by the same factor, which is
independent of the resolution.
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17 × 17 33 × 33 65 × 65

257 × 257 513 × 513 1025 × 1025
(a)

17 × 17 33 × 33 65 × 65

257 × 257 513 × 513 1025 × 1025
(b)

Figure 1: A sequence of approximate solutions of (22) at various resolutions:17 × 17, 33 ×
33, 65 × 65, 257 × 257, 513 × 513 and1025 × 1025. (a) We see clearly that the error decreases
if the resolution increases. (b) Adapted grids corresponding to the solutions in (a). All points
at the resolution17 × 17 are used, but the mesh is refined locally so that only a fraction of the
higher resolution grids is used to minimized the error. The solutions as well as the adapted grids at
resolutions513 × 513 and1025 × 1025 are almost identical.
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Figure 2: (a) The error remains roughly proportional toǫ; o− numerical data,−− logarithmic
slope forO(ǫ). (b) Error as a function of the number of adapted grid pointsN ; o−, numerical
result;−−, logarithmic slope forO(N−3) (c) The cpu time[s] is approximately proportional to
N ; o−, numerical result;−−, logarithmic slope forO(N ).
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Figure 3: The velocity,u(0.5, y) atRe = 1 000 is compared with that of [12] and [7].
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Figure 4: The velocity,u(0.5, y) atRe = 1 000 is compared with that of [12] and [7].
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Figure 5: The velocity,u(0.5, y) atRe = 1 000 is compared with that of [12] and [7].
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Figure 6: The temperature distributions at dimensionless time, t = 10, for various values of the
Rayleigh number,Ra = 10−3, 10−4, 10−5, 10−6, 10−7, and10−8. The initial temperature att = 0
is the same for each case (not shown here). Clearly, thermal boundary layers are developed asRa
increases.
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Figure 7: The development of thermal boundary at various values of the Rayleigh number,103 ≤
Ra ≤ 108. (a) The simulated velocity profilesv(x, 0.5). (b) The simulated temperatureθ(x, 0.5)
profiles.
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Figure 8: Time evolutions of a localized heat source atRa = 103, 103, and105.
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Figure 9: (a) Temperature profileθ(x, 0.5, 60) and (b) vertical velocity profilew(x, 0.5, 60) for
Ra = 103, 104, and105
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Figure 10: (a) Temperature profileθ(x, 0.5, 6) and(b) vertical velocity profilew(x, 0.5, 60) for
Ra = 103, 104, and105
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