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Abstract

The development of an efficient computational methodolamgytfansient heat and mass
transfer applications remains challenging in science angiheering. When a solution is lo-
calized on the fraction of a computational domain, an apgpadaptive mesh method could
minimize computational work for computing the spatial $ion. In this paper, we propose
a novel multi-resolution algorithm for solving the trangienomentum and energy equations,
where wavelet transforms are used to develop an adaptivl. mEse nonlinear dynamics
between the velocity and temperature fields is modeled byirgplthe coupled system of
equations simultaneously, where the rate of convergenseébden optimized with a nonlin-
ear multi-level methodology so that computational costrapprtional to the number of grid
points. Numerical experiments have exhibited good agre&neith benchmark simulation
data although only a fraction of the grid points comparedhi® eference model has been

used. Clearly, this indicates the optimal performance eftoposed model.
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1 Introduction

The natural convection and the shear driven circulationbo@nded domain appear frequently in
many complex industrial applications such as nuclear ceaasulation, ventilation of rooms, solar
energy collection etcel.g, see, 10]. The numerical investigation of such convectikaitations
often requires a high spatial and temporal resolution bez#uwe solution contains localized or in-
termittent structures, or sharp local variations, in whadations of these structures may also vary
with time. For such a transient flow simulation, using modggh performance computing (HPC)
facilities, one may be able to employ a mesh with extreme hegblution, and there exists a num-
ber of commercial or freely available Computational Fluign@mics (CFD) softwares that may
be used for this purpose. Alternatively, usingadthocerror indicator, an adaptive mesh refine-
ment (AMR) approach was introduced in [4, 5, 6], which can &ed.to improve the accuracy of a
transient simulation. In [20], such an adaptive mesh metiasistudied for transient heat transfer
applications. In [30], the use of interpolating waveletstorm was studied so that a spatial mesh
can be refined locally at each time step without usingaahocerror indicator.

There are two principal drawbacks. First, fod-@imensional non-adaptive mesh, if the reso-
lution increases by a factor @fin each direction, the total number of grid poin¥sincreases by
a factor of2¢ if the mesh is refined uniformly. Clearly, this approach @ases drastically both
the CPU time and the memory. Second, using a locally refingld tr@solution adaptive mesh, one
may be able to optimize the number of grid poiffson an adaptive mesh such thet < N.
However, this approach would require an extremely smak tatep for using an explicit time in-
tegration scheme because of the Courant-Friedrichs-L&8FY) criterion [20]. Moreover, a fully
implicit method for both the linear and the nonlinear termhgnomentum and energy equations

requires matrix-vector multiplications at each time step tb linearization of the nonlinear sys-



tem, which has a computational cost that is proportion@td/?) (e.g.see, [18]). Therefore, the
development of a more powerful numerical method is esddatian optimal use of adaptive mesh
methods for transient simulations of heat transfer apptina. Ref [33] used a non-adaptive mesh
to study other aspects of cost effectiveness, such as teeyseebased discretization, for heat and
mass transfer applications. Generally speaking, the meatidynamics of the CFD or heat transfer
problems is an everlasting computational challenge, amdrastd methodologies such as adaptive
mesh and multi-scale solvers can be used to improve therpaafwe of a CFD model for heat
transfer application.

In this research, we study the development of a novel appredice adaptive multi-resolution
methodology AMR) — for the solution of nonlinear, advection dominated, thalty or shear driven
transient flow problems. We aim to put together benefits addtpowerful techniques that have
been evolved independently to the field of CFD. First, to nhatermittent spatial features effi-
ciently, an adaptive mesh is constructed from the secondrgéon wavelet transform of a tran-
sient variable, where the spatial discretization is comguwtith an adaptive wavelet collocation
method (AWCM) [21, 26]. Second, to adapt in space and time tamemove the CFL restriction
on time steps, a second-order fully implicit fractional éinmtegration scheme has been studied,
where ideas from the full approximation scheme (FAS) arel fisesolving the simultaneous sys-
tem of equations iteratively at each time step [27]. Thiaine benefits of Jacobian-free Newton-
Krylov method (JFNK) are useful to ensure that the compaorteti complexity remaing (),
where\ is the number of points on the adaptive mesh. Note that we isa@V for the number
of points on a non-adaptive mesh, akdfor that on an adaptive mesh, where usudily< N.
We want to develop an adaptive mesh algorithm for simulagitigansient problem such that the
computational cost increases with only linearly if the mesh is refined locally, where the dedire

accuracy will be achieved according to a giepriori error tolerance. Moreover, we want that



N does not increase linearly if the tolerance for the accunagegsure is reducede. the accuracy
is improved. In such an adaptive computational model, thaber of grid points on the adapted
mesh indicates the saving of CPU time with respect to cdioms on a non-adaptive mesh when
the CPU time is linearly proportional to the number of points To achieve this goal, instead
of combining three powerful methods.g, AWCM, FAS, and JFNK directly, we have considered
only some benefits of each of these methods to develop a newitalg — AMR — for heat and
mass transfer applications. This paper presents key iregrsdof thiSAVR approach, and veri-
fies its performance with transient numerical simulationsomparison with data available from
previously published articles.

The set of equations and temporal integration scheme asemex in sectiod2. In sec-
tion §??, we outline the basic concepts of wavelet based numerigabapnation. The proposed
MRA methodology has been presented;édh Numerical experiments have been summarized in
section§b, where we verify that the CPU time increases approximditedarly with the number
of grid points\/ for all examples. Moreover, we have found tihdt< N in comparision with
benchmark data for all numerical experiments. Finally, \aeensummarized the main results in

sections6.

2 Mathematical formulation and temporal integration

2.1 Governing equations

The flow under investigation in this study is governed by tla&iNr-Stokes equation, and its ther-
modynamic state is described py= p(p, ), where the thermodynamic variables are deng)ty(
pressuref), and temperaturé]. The Boussinesq assumption has been adopted. First, plee-de

dence of density() on pressure() has been neglectete. p # p(p). Secondly, the dependence of



density on temperature has been approximated by

p(0) = p(6o)[1 — 5(0 — 0o)],

whereg is the coefficient of thermal expansion. The governing sysi€equations in dimension-

less variables include the following PDEs:

V U = 07 (1)
ou [Pr_, L
o0 1
ot vV PrRa ©

In the above system, characteristic scales for length citgJand temperature ark, U, andTy
respectively. The dimensionless number 0 corresponds to a shear driven flow , apd= 1
corresponds to a thermally driven flow, whéfe= /g3LTx. The Prandtl and Rayleigh numbers
are, respectively, defined by

L3T,
Pr = Z, andRa = 90 R,
K

VK

which gives a Reynolds number

 gBL*T L .

Re = YIOLTR UL i per — Ra/py.
14 14

Scientific journals publish a number of articles based orsyfs¢em (1-3), which is a fundamental

mathematical model for heat and mass transfer applicatibhe proposed methodology is thus

tested by solving these equations.



Let us now present necessary initial and boundary conditionsimulating a shear driven as

well as a thermally driven circulation in a bounded domain.

2.1.1 Conditions and parameters for a shear driven flow

The set of equations (1-2) with= 0 governs a shear-driven, incompressible floWia= Q U 99,
where the temperature equation (3) is excluded from the noaleolution procedure. Heréx)
is the boundary of the two-dimensional cavity= (0, X') x (0,Y). The initial and boundary

conditions are given by

(initial condition)

(u,v) = (0,0) V(z,y) € (0,X) x (0,Y)att =0
(boundary conditions)
(4)
(u,v) = (V,0) Vo e [0, X],y =Y, att > 0 (top wall)
(u,v) = (0,0) vz € [0, X],y = 0, att > 0 (bottom wall)
(u,v) = (0,0) Vy € [0,Y],z = 0,2 = X, att > 0 (side walls)

These conditions are used in [12] witth = 1 = Y andV = 1, which serves as the reference
model in sectiort5.2. Since the temperature equation is excluded from theesysve use the
relationshipRe? = Ra/Pr, and henceRe is the only dimensionless parameter that governs the

flow.

2.1.2 Conditions and parameters for a thermally driven flow

The set of equations (1-3) with = 1 governs a thermally-driven, two-dimensional natural con-

vection flow in a cavity:Q = Q U 0. The initial and boundary conditions for the velocity are



given by (4) withV” = 0, and that for the temperature field are given by

(initial condition)

0=0 V(z,y) € (0,X) x (0,))att =0
(boundary conditions)
5)
T Yy €10,Y],z =0, att > 0 (left wall)
0 =06, Yy € [0,Y],z = X, att > 0 (right wall)
5 =0 Vo €[0,X],y =0,y =, att > 0 (top & bottom walls)

These conditions are used in [19] with= 0.5, 6, = —0.5, Pr = 0.71, and10? < Ra < 10°.

2.2 Temporal integration

A fractional step time marching method - also known as thgeptmn method - was proposed
in [8] for solving egs. (1-2), where at each time step an aaxilor intermediate velocity is ob-
tained from (2) and is updated such that eq.(1) is satisfiedref. [8], the projection method
was implemented on a collocated or regular grid. Alterredyivthe method of Harlow & Welch
(1965) [15] - also known as the MAC method - is a commonly usgdréghm in CFD applications
that employs a staggered grid. Using the Chorin’s projeatie@thod (CPM) [8], a fully implicit,

second order time integration scheme for (1-3) takes theviolg form

V-u"t =0, (6)
w1 n+1 n+1 n n n+1 Pr 2(p,n+1 n ’7’% n+1 n
A7 +5('u, Vau""+u" V") =-VP" + @V (u"" tu )+7(‘9 +6")
(7)
g+l _ gn N l(u”“ g Ly Vo) — 1 VQ(Hn—i-l +6m) (8)
At 2 4RaPr )



In this formulation (6-8), the nonlinear dynamics betwdsavelocityu and the temperatureare
calculated simultaneously, which requires an efficiematiee method. The most common practice
would solve (6-7), in the first stage, fa* ™! using either a Newton or Picard type iteration, and
then (8), in the second stage, 3!, which becomes a linear system. The present solution method
is now outlined.

In the first of the fractional time step, the simultaneougseysof PDEs are written, using the
symbolu = [u, 0]7, as

2 2
_ 2 A _ 2, ,m n n
AViu+u Vu+—tu AVAu" —u" - Vu +—tu , 9

where

Pr
Ao | VE T
0 \/ PrlRa

u = [u,0]” represents the solution at a fractional time step, @hd= [u", 0"]7 represents the

Y

solution at the previous time step. The coupled nonlinestesy (9) takes the following general
form

Lu) = f (10)

where the nonlinear operatdrand the functionf represent the left hand and the right hand side
of (9) respectively. The system (10) retains the simultasemnlinear dependence of the velocity
and temperature within a fractional time step. In [30], aiindractional time stepping was used,
where the velocityu" ! was obtained with a Picard’s type linearization, and thepeerature was
solved after the velocity has been computed, thereby iggahe non-linearly coupled dynam-
ics. In contrast, the present development proposes a fas¢neal methodology for solving the

simultaneous system of equations (10).



The time evolution of the temperature figlef-* = 0 is obtained from (10). However, the same
for the velocity field requires additional steg?™* = u — AtV P""! such thatV - u"*! = 0. This
step accounts for the effect of the pressure gradient farcke that eq. (1) is satisfied at each time

step, thereby requiring the solution of a Poisson equation

1
2pn+1 — - u. 11
V = tV u (12)

In the present implementation of the CPM algorithm, the m&ar system (10) of Helmholtz
equations and the elliptic Poisson equation (11) are save@ch time step, where the boundary
conditions for (11) are Neumann typ& P**! . 4 = « - 7, and that for (10) are Dirichlet type.
In order to optimize the rate of convergence and the comipuit cost, we have developed a

multi-resolution methodology that is now outlined briefly.

3 A wavelet based numerical methodology

Recently, wavelet-based methods have appeared in a nurhbesearch areas as a dynamically
adaptive numerical method [2, 9, 13, 16, 24, 30]. Wavelets lma classified into two cate-
gories. The first-generation wavelets have difficultiesealthg with non-periodic boundary con-
ditions [e.g.see, 3]. However, this limitation has been resolved withrtheduction of the second-
generation wavelet theory in [23]. The recent developmehigavelet methods for CFD applica-
tions have been reviewed in [21]. A second-generation agapavelet collocation method (AWCM)
for time dependent PDEs was proposed in [25], which was égfro solve two- and three-
dimensional elliptic problems [26]. In [1, 2, 17], the 2D tioity equation was solved in the
simultaneous space-time domain, assuming the time varebif another spatial direction, using
the second-generation AWCM. To the best of authors’ knogdedhe benefits of wavelet-based

10



numerical methods have not been fully realized in the ardeeat and mass transfer application.
In [29, 30, 31, 32], the incompressible Navier-Stokes equatand the temperature equations were
solved using a first-generation interpolating wavelet rodttwhere the temperature field and the
velocity field were computed in two steps using a Bi-Conjedatadient STABIlized (BiCGSTAB)
algorithm. This algorithm requires the linearization of tionlinear system, and does not take full
advantages of the multi-level proprieties of waveletshimfbllowing section, the wavelet method

for approximating a given function has been presented.

3.1 The wavelet collocation method

In the present development, second-generation waveketsoastructed on é&dimensional grid

G ={x,cQ:kck) jecJal' =z}

using the lifting scheme, e.g. see [22, 26] for details. Harfeinctionu(x) is approximated by

j—1 241

ul(e) = Y Ael@) +> > Y dilvi (=), (12)

kekcio l=jo p=1
ke kmt

g
ldie" |

luzllz —

whereG’0 is an arbitrary coarse gridy’ is the desired fine gridC’c and KC# are sets of indices
associated with the gri¢’, andd = [}, d}"'](jo <1 < j—1, 1 < u < 2?—1) denote the wavelet
coefficients at levej [3, 26].

Let ¢ = [c}] denote the numerical values of the functiofx) on a gridG’. In the lifting

schemec is separated into an even or coarse data associated ondhg/gtiand a odd or detail

data on those grid points ¢ which do not belong tg’~!. Odd values are then predicted from

11



even values, and even values are updated using predictedabges. This is done recursively,
starting from a fine grid;’ until a coarse grid;’° is reached. The process transforms a given
function evaluatiom into its wavelet transforrd. Symbolically, we writel = Wc ande = W—d,
whereW andW—! are forward and inverse wavelet transform operators. Welthnor W-! are
formed explicitly, but these transforms are computing gsinly O(N) operations - thanks to the
lifting scheme.

When G’ is a uniformly refined dyadic grid, there are a totaléf= (27 + 1)¢ collocation
points. However, only a fraction of these points are assediwith the largestv’ wavelet coeffi-

cients,|d7| > el|uie

2, Where eq. (12) provides the bestterm approximation/ (x). Such an
approximation does not oscillate at a frequency or wave murtitat is larger tha®’ [9]. In other
words, the maximum wave number for the approximation (12),isvhich is same as the maximum
wave number for a Fourier spectral collocation method omtiteG’. Hence, the adaptive wavelet
approximation (12) retains the same wave number truncaisowhat a Fourier spectral method
would do on the gridj’. If u(x) represents a property of a fluid motion that has localizetiapa
structures, we can have’ < N, which is one well-known advantage of wavelet based meth-
ods over spectral methods. The computational complexith@fpresent wavelet method, using
lifted interpolating bi-orthogonal wavelets, 3(/V'), which was verified previously, for example
see, [26].

All spatial derivatives in eq. (10) and (11) are calculatsthg a weighted residual collocation

method such that

/R(x)é(x — x))dx =0,

where the residual is defined B(z) := Lu(x) — Lu!(x), andi(z) is the dirac delta function [e.g.

see 1]. Then, following [1], we havéu(xi) = DW~'d, whereD is the resulting differentiation

12



matrix. First,d is obtained by taking the forward wavelet transform of a gigeand then the in-
verse wavelet transform ef at each levej recursively results into a polynomial representation of
u?, which is differentiated to find derivatives. The compudaél cost of this approach is approxi-
mately equal to that of calculating the wavelet coefficientsere neithe) nor W-1 is explicitly
formed, due to the lifting scheme. It can also be shown thatlaximum error of calculating
q-th order derivative ofi(z) is O(¢'~%/?), wherep is the order of the polynomial that is used in
computing wavelet transform [e.g. 26, 1].

In the present work, an adaptive mesh is constructed reelysstarting from the coarsest grid
G’ , and extending it to the desired finest leyaiuch that only those grid points that are necessary
to evaluate the approximation (12) are used for a simulati®rdetails of the mesh generation
process is described in [26]. The system of nonlinear egoat{10) and elliptic equation (11)
are discretized on the adaptive mesh using a method thatdeas dummarized above, without
theoretical details, and the readers are referred to th& w26, 1]. In this research, a multi-

resolution algorithm has been proposed for solving (10)(@agl

4 A multi-resolution method for nonlinear system

A multi-resolution or multi-grid solution method transéethe solution from a fine to a coarse
resolution, and vice-versa. The present method employslapti®e mesh, and the grid transfer

process is based on the wavelet transform coefficiénts
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4.1 Grid transfer operations

Using a wavelet transforr#’ on a gridG?, the fine-to-coarse grid transf&’ is denoted by

=R, (13)
and defined by
' j—2 241
@)= ) e (@) + ) > @), 1dy'] = ellullls (14)
kekio I=jo n=1
ke Kmt

which is obtained by discarding the coefficiedfs ", k € K#i~! u=1...2¢ — 1 from eq.(12).

Similarly, the coarse-to-fine grid wavelet projecti@ is denoted by

uw =R, (15)

which is the exact inverse of (13) in the way that the discardiavelets are now included to
obtain (15). These discarded wavelets may not be availalpieactice, and following [3, Ch.7], we

will use the predict wavelets to define the coarse-to-find gansfer process (15) approximately

by
o j—2 241 2d¢_1
Wix)= > el +> > > ddupt@)+ Y Y d T (@), (16)
kekio I=jo n=1 P— u=1 keicri—1

whered!’~" are approximations to discarded wavelet coefficients.
Note that the classical multigrid algorithm for a linearic PDE employs either a trivial

restriction or a weighted restriction on a uniformly refirgmitl. A trivial restriction implies that
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[R7-/],, " = u] because the multi-level grids are nes@gd! C G such that),' = .

A weighted mean of neighboring values is used to construce@hted restriction, where the
choice of weights is open, but one may consider that theicgetr is an adjoint mapping of the
prolongation, e.g. see [14]. It is a common practice in rgulli theory that weighted means
are used to construct restriction and prolongation opesatmt their construction needs special
treatment if an adaptive mesh is used.

The present development differs from a classical muldtgidgorithm, and implements the
grid transfer operations on an adaptive mesh, using liftiéetpolating wavelet transform, where
interpolating polynomials of ordei and that of ordep are used for coarse-to-fine and fine-to-
coarse transfers respectively. In all numerical verifaradi we have used= p = 6. According to
the approximation theory, the wavelet transform providék @an accurate represent of a function
at coarse or fine resolution, which provides a more apprtgpcanstruction for these grid transfer

operations rather than using ad-hocweighted mean that is commonly in multi-grid theory.

4.2 A multi-resolution algorithm

Let £L(u’) denote the approximation @(u) on the gridg’, where£ is a nonlinear advection-

diffusion operator - such as the left hand side of (10), ahddenrite the discrete form

Lu')=f, (17)

wheref7 is an approximation to the right hand side of eq. (10). Anexgsioblem

L) =gl (18)

15



at a coarser resolutione. on the gridG’—!, is now solved with appropriate definition gf—'. The

current fine resolution approximatie#i- is updated by

uk T = ok 4+ RI (ujfl _ ijlukd),

(. J

error

where the error is calculated at the coarser resolutionisamansferred to the fine resolution. Note,
the calculation of error at a coarser resolution is a keytpaisaving CPU time. The process is
continued until the residual

v = fI— £(ubd) (19)

is minimized by a given tolerance. The right hand side of £8),E’ !, can be formed by transfer-
ring the current residuat;, and the approximate solution®/, to the coarser resolution according
to

g/l =Ry 4 E(Rj’luk’j).

If g/~!is formed this way, a uniformly refined grid is used, and weaghmeans are used to
constructR’, this multi-resolution algorithmNRA) takes the similar form of a multi-grid full-
approximation scheme - as described in [28]. However, sudassical multigrid full approxi-
mation scheme is not optimal for solving the advectionudiibn problem (17) because a substan-
tial amount of computational work is needed for improving thte of congvergence,g, using
anisotropic coarsening and refinement. In the present olevednt, the adaptive mesh and wavelet
transform as well as the following development are novetrdoution of thisMRA with respect to
multi-grid theory, where anisotropic coarening/refineirfeas not been used.

In order to improve the rate of convergence for the ablgR4, a process - known as relax-

ation or smoothing - can be employed to improve the appratéma:*/ before transferring to

16



the coarser resolution, as well as to imprave!J. A relaxation method aims to remove high
frequency oscillation of the error from an approximate 8olu A goal of the present work is
the development of an efficient relaxation method for hedtraass transfer applications, where
a nonlinear advection-diffusion problem is solved. The rait convergence of the presdviRA
solver depends also on the relaxation method that solv€s@@pproximately [e.g., 27].

To see how a relaxation method for a nonlinear problem iniced a high computational over-

head, we can re-write eq. (17) in the following compact form:

f7(u) = 0. (20)

Since this is a nonlinear system, an improved approximatgisn u* + s, is obtained by solving
the linear probleny/ (u*7)s;, = —f/(u*7) approximately, whergf is the Jacobian of the nonlinear
system (20) and, is the/\V x 1 error vector that can be thought as a search direction. litiaadb
the construction of7, a numerical construction ¢f (u*7)s,, is a matrix-vector product, which has
a computational cost that scales li®&N?), where is the number of grid points. Clearly, the
computational overhead is extreme even with an adaptivé meesnique. The solution procedure
will be benefited greatly if one computeg(u”*)s, using O(N) complexity as well as finds a
search directios;, such that the residual (19) is reduced by a significant amount

In order to reduce thé&(N?) complexity toO(N), let us consider the Frechet derivative of
f7(u), which is a fundamental Applied Mathematical technique céding to the mathematical
definition of the Frechet derivative, we can approximatedtion of the Jacobiay along the

search directios,, in the form of a matrix-vector product, such that

P (b + ps,) — £9(uh)
n

j(uk’j)s,€ ~ (21)
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for some small real number[18]. Clearly, the right hand side of (21) can be evaluateti @i(\)
complexity when the cost of computirfg scales likeO(N). Hence, in the above development,
the problem is linearized approximately with ') complexity.

Let us now develop a line search method to relax (1&)to reduce non-smooth error from
a given approximate solution™/ such that|f’(u*)||, is minimized by some factor. Most line

search algorithms require to find the search direcijoto be a descent direction, satisfying

167 (™ + agsy)| |2 < [[£7 (™7)]]2,

where the positive scalar, is the step length. In the present development, the vegts com-
puted from the linear combination efindependent vectors, and hence, without loss of generality
we can normalize the step lengih = 1. Here,s; can be determined, using a Krylov subspace,
K. (J, £/ (u*7)) such that

min [|7 (u")sy + £(u*)]],

sLEXL

wherev is the dimension of the Krylov sub-spakg,. For interested readers, we refer to [Ch 7.3
of 28] for a detailed mathematical analysis of this Krylovthoal.

In the JFNK solverge.g. see [18], eq. (21) optimizes the computational complexity nor-
mally, a non-adaptive mesh is used. Moreovenyill be as large asV unless an appropriate
problem dependent pre-conditioning matrix is found, whet major drawback for the JFNK
method. In our development,is small, usually has a value frosto 5, because the above Krylov

method is used only in the relaxation sweep of the proposdtl-regolution algorithm.
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4.3 The implementation on an adaptive mesh

According to eq. (12), if an intermittent functiar(x) is sampled on a grig”, we can represent
this function using only a fraction of the wavelet coeffidied’. In practice, solving a transient
problem on the gridj’ and using the wavelet transform of this solution do not bang advan-
tage to simulating a flow. Instead, we need to develop an igthgothat finds the fraction of the
coefficientsj.e. the fraction of the gridj’ without calculating the flow on the entire grid. For this
reason, one cannot apply the wavelet method directly tolat@a fluid flow.

Let us now summarize the implementation of the propdded on an adaptive mesh that is
obtained recursively starting from a given coarse @g#d and updating it dynamically as the flow

exhibits localized features.
1. Start with an initial guesg*~ for the solution of (17) on the present level

2. Performry steps ofVRA iterations on the current level. The choice of the parameter 1
resultsin &v- cycl e andy = 2 results in aM cycl e iterations (e.g. see, [27] for a details

of multi-grid V- andW cycl e iterations).

3. Perform a second-generation lifted interpolating fodwaavelet transform and analyze the
one-to-one mapping between the wavelet coefficignts[d)] and the grid points: = [27].
All grid points that are associated with large wavelet cogffitsi.e. |d}|/||u’||, > ¢ are
marked for mesh refinementast i ve poi nt s at the present level. Delete all other grid

points.
4. If there are no points for refinement, go to step 2, otherygentinue onto the next step.

5. Refine the mesh, and from the next level grid, consider tmdge collocation points that

belong to a suitably definagei ghbor s of the active grid points at the present level [25].
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6. The setoficti ve poi nts andnei ghbor s constitute the next level mesh. Ensure that
all active points from the present level are included to e fevel approximate mesh. This
criterion is necessary to ensure that adaptive grids acenagsted so that wavelet decompo-

sition and reconstruction are stable.

7. Use the grid transfer operation (16) to obtain an apprat@solution on the next level mesh.

Go to step 2.

8. If convergence criterion is satisfied, stop the iteraparcess.

In the following section, the proposed method is verified bynerical examples.

5 Numerical experiments

5.1 \Verification for error and rate of convergence

In order to demonstrate the accuracy and flexibility of theppised method, we first consider the

numerical solution of the Poisson-Boltzmann equation

—V?u + asinh(bu) = f, (22)

wherea andb are constants. The right hand functigrand Dirichlet boundary conditions are

chosen such that the solution of (22) is given by

u(z,y) = arexp(—(2* +4?)/(2w)) — 0.5 sin(7z) sin(7y),

wherea; = 1.0, a = 1.0, b = 1.0, andp = 1073 have been used. The problem can be considered
as a toy model for the purpose of numerical verification. E{@) presents the solution of (22) at
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various resolution$7 x 17, 33 x 33, 65 x 65, 257 x 257, 513 x 513, and1025 x 1025, showing that
the solution is converged iteratively if the resolutionreases. Fig. 1(b) presents the corresponding
adapted grids, verifying that grid points are concentraiear the point0, 0), where the solution
has a sharp gradient. These plots in Figs (1(a)-1(b)) detrada<learly that the approximation
error is reduced, and the mesh is refined only locally if tis®k&ion increases.

For this simulation, the resolution of a uniform ggdis given by(m,27 1 +1) x (m, 2/~ +1),
where usingn, = m, = 2, the coarsest grig' has a resolutiol x 3 or 9 grid points, the finest
grid G'° has a resolution 025 x 1025 or 1050 625 grid points, and a toleranee= 10~* is used
to obtain the finest grid;!° according to the algorithm that has been presenteg#tia. Here
only 12473 points of the uniform grid;'° is used for the simulation. The number of points in the
adapted grid;'° is 12 473, which is aboug4-times less tham 025 x 1 025 or 1 050 625 points in the
non-adapted grid. Moreover, the number of poiritd73 is equivalent to a resolutionl2 x 112,
which means that the resolution has been increased by alf@ctoa of 8 or 9 in this case without
increasing the global number of grid points. This experitrexhibits clearly the advantage of
adaptive mesh refinement approach.

As summarized in table 1, numerical experiments with ingir@athe resolution each time by
a factor of2, where the multi-level grids vary from & x 17 resolution tol 025 x 1025 reso-
lution, indicates that the rate of convergence is indepehdtthe resolution. Using numerical
experiments for0~! < ¢ < 1079, we have calculated the errfu(x,y) — u/(z,y)||. and the
number of points\/, whereu(z, y) stands for the exact solution anf{ z, y) stands for the numer-
ical solution for each value ef Fig. 2(a) shows that the error@(¢) and Fig. 2b) shows that the
error isO(N?). In other words, the toleraneecontrols the error linearly, and7#% reduction
of the error increases/ by only about25%. In Fig. 2(c) the CPU[s] time is plotted again'st,

which verifiesO(/N') complexity such that the computational cost scales ligeaith the number
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of computational degrees of freedokn

The above numerical test verifies the performance of theqe@gbalgorithm.

5.2 Numerical simulation of a shear-driven flow

A shear-driven cavity flow, where one wall of the cavity moaes constant velocity on its own
plane, exhibits a boundary layer of thickne$sx Re~'/2, and is a classical test problem for the
assessment of CFD codes. In order to verify the accuracyegdrésent model, where a fine mesh is
used only in the region of boundary layer, comparison resrk summarized in this section. The
initial and boundary conditions corresponding to a sheaed 2D flow in a cavity:Q) = Q U 9Q

are given by (4).

5.2.1 Comparison with reference solutions

In Fig. 3, the simulated velocity(0.5, y) is compared with data presented in [7] and [12], showing
a good agreement between the present and reference selubimte that [7] used a Chebyshev
collocation method, employirgp 600 grid points atRe = 1 000, and [12] used a multigrid method
on uniformly refined multi-level meshes, employi6g536 grid points atRe = 1000 (as well as
various other values aRe). Using a tolerance = 1073, the present model requires oriyt16
grid points, which is about3% or 5% of the grid points required by [7] and [12] respectively bu
retains an accuracy that is comparable to these referemegagions. For the present simulation,
the number of grid points also increases1to275 and 25434 if the tolerance is decreased to
e = 10~* and 10~ respectively, where the later is about the same as that ofjg]4 compares
velocity u(0.5, y) for a range of tolerance valués—2 < ¢ < 107%. This numerical experiment
exhibits that the proposed model reduces the computatiwoed units by reducing drastically

the number of grid points without introducing significantogrin comparison with numerical data
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from [12, 7].
A principal objective of the present study includes a spawktane adaptivity such that the
time step,At is not restricted by the CFL condition. In order to assessctig and error of the

time integration scheme in such an adaptive mesh CFD madeisldefine a CFL number by

max(||u||) max(At)

Loy =
CFlnax min(Ax) ’

where CFl,., = 1 means thaiax(At) = min(Ax) becausenax(||u||) = 1 for this simulation.
Since an explicit time integration scheme requires GEL< 1, the time stepAt¢ < min(Az),
will be extremely small if the mesh is refined locally in thgien of sharp change of the solution.
Here,At is adapted dynamically so that a given GEL is satisfied. The experiment with various
CFL,..x Values betweeih and6, as presented in Fig. 5, shows that the time &tépan be adjusted
according to a desired accuracy without being restrictethbyCFL number, which is a distinct
feature of the proposed model with respect to classical Gfedrtiques. Fig. 5 shows clearly a
6 times larger CFL number retains the accuracy within therémlee limit, which is clear from a
comparison of computed0.5, y) between Figs. 3-5.

These comparison tests reveal good agreement with reteaiations as well as confirms
the accuracy of the present solution although a sparseguidad with a largé\t and large CFL

number.

5.3 Flow in a differentially heated cavity

We have now simulated a flow in a differentially heated cafatytwo main reasons. First, this
is a prototypical problem for verifying a CFD algorithm, whiis relevant to many industrial ap-

plications. Secondly, the flow includes the gravitatiorfed@s, where density variation occurs in
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the vertical direction due to thermal effect. This flow isheit driven by only a thermal gradient
- known as the natural convection or driven by both a shearaatidbrmal gradient - known as
the mixed convection. Results for a natural convection fleypresented. The characteristic di-
mensionless parameter is the Rayleigh numBer, where the flow remains steady or laminar if
Ra < Ragiea, Ut transitions to turbulence occur otherwise. This ottaréstics of the flow makes

it a benchmark candidate for understanding the convergeirc@ew numerical algorithm.

The set of equations (1-3) with = 1 governs a thermally-driven, two-dimensional natural
convection flow in a cavity) = Q U 9. The initial and boundary conditions for the velocity are
given by (4) withV = 0, and that for the temperature field are given by (5). A serfesumer-
ical simulations have been performed fidP < Ra < 10° using the same initial and boundary

conditions. These numerical simulations agree with tha deailable from [19].

5.3.1 Results

The temperature distributions fa6® < Ra < 108 are presented in Fig. 6, where we see that the
region of hot or cold fluid is concentrated near the wallgtasncreases. In other words, strong
temperature gradient occurs near the walls at liighThis development of the thermal boundary
layer makes the computation of such a flow a challenging taAskdescribed in [19], a uniform
mesh that is sufficient to calculate the flow/at = 103 will become insufficient ifRa increases
because the narrow boundary layer at highrequires a fine mesh. Looking at the temperature
distribution atRa = 10® in Fig. 6, one sees clearly that the mesh needs to be refinatijlonly
near all four walls of the cavity, which is not necessary afasn the walls. According to eq. (12)
and the algorithm as described&4.3, the preser¥RA identifies the region dynamically, where a
large gradient or boundary layer occurs, and determinesuheerical resolution that is necessary

to resolve such a boundary layer. Our numerical experimeititsa tolerances = 5 x 102, show
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that the maximum necessary resolutiohs x 128 for 103 < Ra < 107, 256 x 256 for Ra = 108,
and515 x 512 for Ra = 10°. However, atRa = 10, the present simulation has used ohly308
points, which is about% compared to the uniform mesh at the resolufio? x 512.

To see the growth of the boundary layer near the side walésyéocity v(x,0.5) and the
temperature(z, 0.5) are presented in Figs(@), 7(b) respectively for increasing values &fa.
These results are compared with the data presented in [J.9F&.3], and we see a very good
gualitative agreement. The scaling for the velocity field tfee present model differs from that
for the model of [19]. Hence, a rescaling of the model outaivgs that the velocity profiles in

Fig. 7(a) has a good quantitative agreement with those presente@jin [1

5.4 Heat island circulation

A heatisland circulation is a typical horizontal conventdriven by the differential surface heating
in the atmosphere. In order to include the stratificatioeaffthe temperature field in eq. (3) is
decomposed inté(z, y, t) = 0y +0(y)+0' (z,y, t), where gravitational force acts along the positive
y direction. This decomposition is equivalent to adding thm-#v on the right hand side of

eq. (3) [11], where the Froude number is definediby= —Z—.. Hence, the choicér = co

L./-9 09
0 @

< [D

keeps the eq. (3) in its original form, and the cholte= 1 makes it equivalent to the model that
was presented in [11]. Using this modification to the govegrequations, an idealized heat island
circulation in a vertical plane has been simulated, wheedrihial localized heat source at= 0
is on the bottom horizontal wall - as shown in Fig.8(a).

The time evolutions at= 60 of the initial temperaturé(z, y, 0) for Ra = 103, 10, and10° are
presented in Fig.@-d). The pattern of the rising plume indicate that the verticapagation of the
plumeisreduced iRa is increased, but the plume remains symmetric with respebethorizontal

distancer measured from the center of the heat source. This patternyjgi@al characteristic
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of horizontal convection, which means that the numericatiehdas simulated a flow that has
good qualitative agreement with an actual heat island latcn. In Fig.9(a), we have presented
the temperature profilé(x, 0.5, 60) out of three temperature data presented in F&-d8, which
shows that the maximum temperature along thegjire0.5 is reduced whetka is increased. The
vertical temperature profile¥ 0.5, y, 60) in Fig. 9(b) exhibit that the temperature decays rapidly
to zero along the vertical line = 0, where(0, 0) is center of the heat source, and the rate of this
decay is faster with higher values Bt:.. This decay is associated with the stratification. To see thi
let us assume that the temperature field is spatially homesmgesy which simplifies the temperature
equation (3) to the form

00 1

ot Fr2
Clearly, the effect of the stratification term is to decay t@perature in the region of positive
vertical velocity,u. The horizontal profile of the vertical velocityz, 0.5, 60) in Fig. 9(c) shows
that the vertical convection is increasingly localizedabthe heat source with increasiRg. The
narrow region of positive is accompanied by narrow regions of negatiyevhich means that the
region where the temperature decays is also accompaniegdjimns of temperature increase. This

explains the wiggly profile forza = 10° in Fig. 9(b).

5.4.1 Comparison with reference results

In [11], an idealized heat islan circulation was investgahumerically, where a fluid that was
confined in a 2D region was heated with a localized heat san¢he bottom boundary. The nu-
merical simulation in [11] required an extended domain kheoito accommodate the horizontally
convective circulation. In contrast, the present simalatised a relatively small domain, where

horizontal convection is modelled numerically using a Naamtype boundary conditions. When
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Fig.9(a), 9(b), and Fig.9(c) of the present simulation ammpared visually with Fig$0(a), 9(a),

and10(b) respectively from the ref. [11], one finds a good agreemespitke both simulations are
done in different computational domain with different bdany conditions and different numerical
techniques. This comparison verifies that our numericalehsidnulates a heat island circulation

as accurate as the data presented in [11].

6 Summary

This paper has explored the development of an efficient CFDeinor transient heat and mass
transfer applications using an adaptive mesh approach. I&-resolution algorithm has been pro-
posed that explores some of the recent discoveries on aglyaoenputational algorithms. Com-
prehensive numerical experiments have been conductelddaetification of the algorithm’s per-

formance. The numerical accuracy has been verified in tvgestaFirst, a nonlinear mathematical
problem has been solved for which the exact solution is knolims verifies the rate of conver-

gence for the iterative method, accuracy of the global nigaksolution, and the computational
time needed for a high resolution simulation. Second, tesmisimulations of a shear driven flow,
a natural convection, and a heat island circulation havea bempared with previously published
numerical data. Good quantitative agreements with thete amfirm the performance of this

novel computational approach.

The proposedVRA algorithm shares the benefits from some advanced technihaesre
known to Applied Mathematics and Computational Physiceassh community. For example,
wavelet based techniques provide an efficient method — kia@tihe nonlinear approximation — so
that the most significant proportion of the energy under alleed function can be computed using

only a small number of grid points without loosing accuraythe CFD research community, the
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need for anisotropic coarsening and refinement has disgedr@r not using the full approxima-
tion scheme. To the Computational Physics research contyntive Jacobian-free Newton-Krylov
methodology is a powerful algorithm for simulating multiysics problems, where a problem spe-
cific pre-conditioner matrix must be designed for each satioih. Instead of using the FAS and
JFNK solver directly, the concept from these algorithmstaken so that a new algorithm can be
designed.

The development throughout this research brings novesitteacientists whose research in-
terest lie in the numerical simulation of heat and mass feanwoblems. The potential future
development includes extension to three-dimensionasiean problems, for which a parallel ver-

sion of this code must be developed. This work is currentiyeuway.
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Grid # of MRA iteration Residual

17 x 17 19 8.06 x 1077
33 x 33 23 1.66 x 1078
65 x 65 23 1.27 x 1078
129 x 129 22 6.66 x 107
257 x 257 22 6.32 x 107
513 x 513 22 6.24 x 1079
1025 x 1025 22 6.08 x 107?

Table 1: The rate of convergence of tMRA solver is tested by solving (22). The algorithm takes
about the same number of iterations to reduce the residuat by the same factor, which is
independent of the resolution.
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Figure 1: A sequence of approximate solutions of (22) atowsriresolutions:17 x 17, 33 x

33, 65 x 65, 257 x 257, 513 x 513 and1025 x 1025. (a) We see clearly that the error decreases
if the resolution increases. (b) Adapted grids correspuyndo the solutions in (a). All points
at the resolution7 x 17 are used, but the mesh is refined locally so that only a fracifathe
higher resolution grids is used to minimized the error. Tdlatsons as well as the adapted grids at
resolutions513 x 513 and1025 x 1025 are almost identical.

36



10
107
210"
L
10°°
-8
10°L - - -
10° 10° 10" 10° 10
€
(a)
10° |
S
(0
10
10° 10"
N
(b)
10°
_.10°
D
(0]
£
=}
5 107
1
10
10° 10 10°
N
(c)

Figure 2: (a) The error remains roughly proportional ¢po— numerical data,-— logarithmic
slope forO(e). (b) Error as a function of the number of adapted grid poikitso—, numerical
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Figure 4: The velocityy (0.5, y) at Re = 1000 is compared with that of [12] and [7].
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Figure 9: (a) Temperature profilé(x,0.5,60) and (b) vertical velocity profilew(z, 0.5, 60) for
Ra = 10%, 10*, and10°
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Figure 10: (a) Temperature profilé(x,0.5,6) and (b) vertical velocity profilew(z, 0.5, 60) for

Ra = 103, 10*, and10°
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