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Abstract

The computational modelling of multiphysics mass transferin a microchannel is

a challenging endeavour. This article has proposed and validated a Lagrangian

methodology for modelling coupled physics using near optimal computational ef-

forts. This new development has been verified and compared with a reference

Eulerian finite difference model. A heuristic theory for computational mass trans-

fer phenomena has been studied. At high Peclet numbers when the reference

Eulerian model fails, the Lagrangian model resolves electro-osmotic mass trans-

fer, showing a good quantitative agreement with theoretical analysis. The La-

grangian model also helps to estimate necessary parametersso that an optimal

electro-osmotic pumping can be designed in a microchannel.The computational

efficiency of the Lagrangian model has been examined, showing that an increase

of the Peclet number by a factor of 32 increases the global computational com-

plexity by about a factor of 104 if the reference Eulerian model were used. This

verifies the optimal performance of the Lagrangian model.
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multigrid.

NOMENCLATURE

ν kinematic viscosity u velocity vector

ρ density P pressure

ψ wall potential f force

ϕ external potential t time

φ scale for external potentialU velocity scale

ζ scale for wall potential h channel width

α forcing parameter H channel length

η electrophoretic mobility ∇ gradient

B Boltzmann constant ∇2 Laplacian

e elementary charge Γ concentration flux

T absolute temperature C concentration

ǫ permittivity D diffusion coefficient

n ion density ∆x, ∆y grid spacing

A Avogadro’s number ∆t time step

D Debye layer thickness nx × ny resolution

ξ streamline parameter L general partial differential operator

Re Reynolds number Pe Peclet number

Superscripts

n time step n+ 1/2 fractional time step

Subscripts

i, j grid point k index for streamline
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1. Introduction

The study, design, and analysis of microfluidics and nanofluidics are widespread

in many scientific and industrial contexts [1–4]. For example, understanding

the electro-osmotic micro-dynamics is important in various microfluidic systems,

such as microelectromechanical systems (MEMS), biological microelectrome-

chanical systems (BioMEMS), and lab-on-a-chip [5–7]. A computational model

- solving the mass and momentum conservation laws numerically - is a virtual

experimentation of such micro-dynamics, and has the potential to advance the

fundamental knowledge of physical, chemical, and biological processes in areas

such as micro-fabrication, biotechnology, and portable devices. There is a grow-

ing interest in using computational models in microfluidic research.This article

presents a novel computational model for simulating electro-osmotic mass trans-

fer in a microfluidic device.

In the past two decades, a number of articles have been published studying the

usefulness of computational models for simulating electro-kinetics in microflu-

idic devices. Among the pioneering works, Patankar and Hu [8] studied the de-

velopment of a steady state three-dimensional numerical model for simulating

electro-osmotic flow in a cross-channel microfluidic device. In their work, a fi-

nite volume approach using the SIMPLE class of pressure solver was adopted to

computationally imitate the experimental investigation of Harrison et al. [9]. As

of the writing of this article, the computational model of Patankar and Hu [8] has

received over 400 citations, and has provided guidelines tofurther computational

developments for scientists and engineers who have interests in computational

modelling of electro-kinetic phenomena [e.g. 10–14]. Overthe years, finite differ-

ence (FD) [15–17], finite volume (FV) [8, 18], and finite element (FE) [10, 19, 20]
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methods have been commonly used by researchers investigating a fluid flow in

microfluidic devices [21].Other methods such as the level set method [22], La-

grangian particle methods [23] or higher order weighted/essentially non-oscillatory

(W/ENO) [24] schemes are not fully examined in the field of microfluidic mod-

elling [e.g. 25].A brief review of recent literature indicates thatthe best numerical

algorithm for simulating flows in microfluidic devices is notfully understood, and

significant improvements in two directions are necessary for taking full advantage

of advanced computational methods in the field of microfluidic research. First,

multilevel and multiresolution methods [26] may resolve more economically the

electric double layer and the moving sharp interface between the transported fluid

and the resident fluid. Second, fully capturing the coupled multiphysics nature of

the electro-osmotic mass transfer would provide sophisticated modelling strate-

gies. The drawbacks of classical numerical modelling in this direction - particu-

larly for mass transfer in micro-fluidic devices - are not fully addressed by recent

computational micro-fluidic models. Current authors are interested in combining

the benefits of multiple advanced computational methodologies -such as the La-

grangian method and the multigrid/multilevel solver- into integrated modelling

frameworks to address the latter of the above issues. This facilitates the devel-

opment of simpler and less expensive methodologies for modelling mass transfer

problems that involve more than one physical phenomenon.

Electro-hydrodynamics or electro-kinetic phenomena often refers to a combi-

nation of electro-osmotic and electrophoretic transport [27, 28]. The topic is a

scientific problem of multiphysics modelling, where at least three physical phe-

nomena - electrostatics, mass/momentum conservation, and ion transport - must

be modelled simultaneously. A computational model would resolve these physics
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by solving a simultaneously coupled system of governing equations that include

the incompressible Navier-Stokes equation, the Poisson-Boltzmann equation, the

Laplace equation, and the Nernst-Planck equation. Computational modelling of

each of these physics requires careful attention to designing sophisticated algo-

rithms. First, the incompressible Navier-Stokes equationcouples the velocity and

pressure, which requires special treatment [e.g. 29]. A multilevel method is exam-

ined in this article to address this problem. Second, the Nernst-Planck equation

takes an almost hyperbolic form because the transport of ions is principally gov-

erned by inertial effects [ch. 11, 30]. This article proposes the use of a Lagrangian

methodology and examines the potential of this technique. Here, we note that a

classical computational problem of mass and momentum transfer will often aim

to improve the stability of a scheme, the order of numerical accuracy, and the

speed of computation, but a computational multiphysics modelling approach will

aim for a balance between numerical speed/accuracy, and the quality of coupled

physics. Hence, a successful computational model of electro-kinetic and/or hydro-

dynamic transport in a micro-device remains challenging. One goal of the present

article is to identify the source of computational error that destroys the quality of

the coupled physics, and to postulate a modelling frameworkso that the need for

computing speed and accuracy does not sacrifice the quality of coupled physics.

This article introduces a streamline-based Lagrangian computational model

for the numerical simulation of electro-kinetically driven transport phenomena in

microfluidic devices. To the best of authors’ knowledge, none of reported com-

putational developments use such a streamline-based Lagrangian approach. Note

that instantaneous velocity vectors are tangential to streamlines, and these stream-

lines do not start or end inside the fluid region.Clearly, streamlines are more
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relevant to the physics of the flow than randomly seeded finitenumber of parti-

cles those are commonly traced in classical Lagrangian models. A two- or three-

dimensional transport law can therefore be reduced to a one-dimensional trans-

port problem in the streamline coordinate. This one-dimensional problem can

be solved analytically, improving the modelling qualityand saving the computing

time. Thestreamline basedLagrangian approach provides a natural framework for

modelling transport phenomena, where a finite number of computed streamlines

model the time evolution of electro-kinetic transport at high Peclet numbers.

Principal investigations of this article include the following. First, we want to

study on the benefits of Lagrangian modelling approach for simulating microscale

flows, and introduce a streamline-based Lagrangian method.Second, we want to

extend the scope of the heuristic stability analysis method[31], showing how to

identify source of computing error in microscale multiphysics simulations. Third,

we want to explore the combined benefits of multilevel and Lagrangian methods

so that the quality of the solution is improved with optimal computational efforts.

In Section 2, the governing equations and the proposed modelling approach

are presented. In Section 3, we have studied the potential for such a Lagrangian

approach to model a micro-scale flow, and compared its performance with respect

to a classical approach. We have also studied a heuristic theory for computational

mass transfer phenomena. In Section 4, results of numericalexperiments are dis-

cussed. In Section 5, a brief summary, present contributions, and potential future

research directions are outlined.
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2. The streamline based Lagrangian modelling

2.1. Governing equations

In 1976, Batchelor [32] introduced the notion of microhydrodynamics for

modelling fluid flows with characteristic length scales at the order of microns (1µm

= 10−6m). This idea remains at the core of multiphysics mass transfer modelling

at micro-scale, despite many other attempts [33]. Thus, thegoverning equations

for a micro-scale electro-osmotic flow can be derived from the fundamental prin-

ciples studied earlier by Debye and Hückel [34], Batchelor[32], and Helmholtz

[35]. Assuming that the fluid with suspended charged particles is Newtonian and

incompressible, the mass and momentum conservation laws take the dimension-

less forms

∇ · u = 0, (1)

∂u
∂t
+ u · ∇u = −∇P+

1
Re
∇2u + f , (2)

where the Reynolds number is defined byRe = Uh
ν

. The length (h) and veloc-

ity (U) scales are listed in Table 2. For a list of dimensional parameters, such asν,

see Table 1. The forcef is a result of the combined effect of an externally applied

electric field and the potential due to the charge at the device boundary that are

exerted simultaneously on a fluid with a large number of suspended species [e.g.

see 8]. As explained by Batchelor [32], a Gibbs distributionfor the anion of the

form,nA exp(eψ
BT ), can be used to model the effect of the wall potential. Taking the

charge density as the sum of charge densities for both the cations and the anions,

and using the Debye-Hückel approximation,D2 = BTǫ
e2nA , we have the following

Helmholtz equation for the wall potentialψ,

∇2ψ = κ2ψ, (3)
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whereκ2 = h2

D2 . Accordingly, the externally applied potential satisfies the Laplace’s

equation

∇2ϕ = 0. (4)

Hence, the electro-osmotic force,f , is given by [e.g. 8, 16]

f = αψ∇ϕ,

where

α =
ζφǫ

ρU2D2
.

Letting the concentration of the passive suspended speciesbeC(x, t), the fluxΓ

of the species can be given byΓ = uC − (η∇ϕ)C, which accounts for the hydro-

dynamic flux,uC, and the electrophoretic flux, (η∇ϕ)C [36]. The concentration

satisfies the following form of the dimensionless Nernst-Planck equation [ch.11,

30]
∂C
∂t
+ ∇ · (u − η∇ϕ)C =

1
Pe
∇2C, (5)

where we have assumed that the derivatives ofψ are negligible compared to that

of ϕ in regions far from the boundary of the device, and dimensionless elec-

trophoretic mobility isη = µ̃φ

Uh. Note the Peclet number is defined by

Pe=
Uh
D
,

where a largePe corresponds to a small diffusion coefficient D. The governing

equations (1-5) model an electro-kinetic flow in a microchannel that can be driven

by an electric force or a pressure drop, where all dimensional parameters and

scales - as listed in Tables 1, 2 - have been combined into fourdimensionless

quantities:Re, Pe, α, andκ.
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2.2. Geometry and boundary conditions

To solve the set of model equations (1-5) numerically, a rectangular channel

of width h and lengthH with walls along thex-axis is used in the present develop-

ment. No-slip and Neumann boundary conditions are assumed for the velocity at

walls and the input/output boundaries resepectively. For the pressure and concen-

tration, boundary conditions are Neumann at the walls and Dirichlet at the input

and output.

2.3. Numerical method

All spatial derivatives in Eqs (1-5) have been computed witha second order

accuracy. An implicit-explicit (IMEX) method is used to solve (2), where the

viscous forces are treated implicitly using a second-orderCrank-Nicolson method.

With the help of Eq. (1), the nonlinear inertial terms in (2) are expressed in their

flux form, and treated with the explicit Euler method. A fractional time integration

method has been employed to Eq. (5) so that the mass transportcan be modelled

with the proposed Lagrangian method, and mass diffusion can be solved with the

Crank-Nicolson method.

The electro-osmotic forcef is computed by solving Eqs (3-4) before starting

the time integration. At each time step, the pressure is computed by solving the

Poisson equation

∇2
(

P+
u · u

2

)

= ∇ · [ f + u × (∇ × u)
]

. (6)

Eqs (3,4,6) and two other Crank-Nicolson systems are solvedusing a multigrid

algorithm [16]. A distinct feature of the present work includes the discretization

of (6) employing a modified version of the staggered grid approach [37], where

∇2P ≈
Pi+2, j − 2Pi, j + Pi−2, j

4∆x2
+

Pi, j+2 − 2Pi, j + Pi, j−2

4∆y2
.
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More specifically, instead of using an actual staggered grid, the effect of a stag-

gered grid is modelled through careful discretization of the pressure equation,

where the pressure point is located at the center of a 2×2 block of cells along with

velocity points at the faces of this block. This configuration helps with the imple-

mentation of a multigrid algorithm as well as takes advantage of the methodology

developed in [37]. This approach conserves both mass and energy at the order of

local truncation error [16]. Boundary conditions for the pressure need extra ghost

points.

2.4. Lagrangian modelling theory

2.4.1. A brief overview of the classical Lagrangian approach

Lagrangian methods are already well-known, and a detailed review is out-

side the scope of this article. Briefly, Koumoutsakos [23] reviewed multiscale

flow simulation techniques using Lagrangianparticlemethods. Among various

approaches, vortex methods (VM) and smoothed particle hydrodynamics (SPH)

methods are efficient, stable, and accurate techniques for computing sharpinter-

faces such as vortex sheets. Lagrangian methods also have drawbacks, such as

significant increases in computational complexity due to periodical re-meshing of

distorted Lagrangian mesh. In some applications, these drawbacks can be over-

come with an appropriate implementation [38]. The main ideaof Lagrangian

methods is to avoid a direct discretization of advective derivatives, where the

time evolution of inertial effects are modelled by following material elements of

a fluid. In this article, we have studied how such an approach helps in accurately

modelling mass transfer phenomena. The following Lagrangian method is based

on the computation of streamlines, and differs from existing Lagrangian meth-

ods [23].
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2.4.2. Streamline based Lagrangian modelling

Let us start with a known divergence free velocity fieldv = [u, v]T , which may

have been available through a numerical calculation. Streamlines of this flow are

curves, where the velocity field is tangential, and are defined by

ds1

u
=

ds2

v
.

These streamlines,s = [s1, s2]T , can be parameterized,s(ξ), and traced by solving

the differential equation
ds
dξ
= v (7)

using an appropriate numerical ODE solver routine [e.g. 39]. Whenv is the ve-

locity field of an incompressible flow, streamlines will not intersect, begin, or end

inside the fluid. For a given physical location with the indexk = (k1, k2), only one

streamline,sk(ξ), will pass through this position. Forξ = 0, if we know a refer-

ence position,sk(0), of a streamline that is marked with the indexk, Eq. (7) can

be solved numerically using the initial conditionsk(0) to findsk(ξ) for someξ > 0

or ξ < 0. The selection ofsk(0) may be arbitrary ork may represent the index of

a grid point. For a fixed value ofξ, the streamline,sk(ξ), traces physical points

(x, y), and hence, we can express the velocity,v(x, y) by v(sk(ξ)). During the nu-

merical computation ofsk(ξ) at discrete values ofξ, the right hand side,v(sk), of

Eq. (7) can be updated sequentially sincev(x, y) is assumed to be pre-computed.

This process traces the parametric curvesk(ξ) that passes throughsk(0). To test

the process, consider a given velocity,v = [y,−x]T , for a solid body rotation flow.

Streamlines passing throughsk(0) have been computed with this process, and are

presented in Fig. 1, where◦ represent the positionsk(0).

Since the velocity field is tangential to the streamlines, the velocity is given by
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the directional derivative of a streamline,s, along the direction ofs such that

v = v · ∇s. (8)

Combining Eq. (7) and Eq. (8), the directional derivative along a streamline can

also be parameterized so that
d
dξ
= v · ∇,

and the directional derivative of any scalar fieldC(x, t) can be written as

∂C
∂ξ
= v · ∇C. (9)

The directional derivative along a streamline is beneficialto the computation of

the numerical solution of (5) when using a fractional time stepping method. The

first fractional time step assumes that the total velocityv = u − η∇ϕ is divergence

free,∇ · v = 0, andD = 0 such that (5) reduces to

∂C
∂t
+
∂C
∂ξ
= 0. (10)

In Eq. (7),ξ is a time like parameter, and for each value ofξ, we have a corre-

sponding streamline positions(ξ). However, in Eq. (10),ξ is a space like param-

eter, describing the advection ofC along a streamlines(ξ). Furthermore, Eq. (10)

states that a given concentration fieldCn(s(ξ)) at tn propagates along the stream-

line s(ξ) at a constant speed, and the solution of (10) can be obtainedanalytically

such thatC(s(ξ), t) = Cn(s(ξ− t)). In theξ-t plane, the characteristic curves of (10)

never intersects each other, and hence, the solution of (10)is unique. Therefore,

at the first fractional time step, the present method computesC(x, t) according to

Cn+ 1
2 (s(ξ),∆t) = Cn(s(ξ − ∆t)),
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wheres(ξ) is the streamline position at present time,t = ∆t, ands(ξ − ∆t) is the

streamline position at a previous time,t = 0.

The second fractional time step accounts for the effect of diffusion, using

Cn+ 1
2 (s(ξ),∆t) as the initial condition assigned at all values ofx = s(ξ), where

∂C
∂t
=

1
Pe
∇2C. (11)

The diffusion problem (11) is solved with a second order Crank-Nicolson scheme,

where a fast multigrid solver is used to solve a linear systemof algebraic equations

at each time step.

2.5. Streamline tracing algorithm and computation of C

In the present implementation, we use a uniformly refined structured finite

difference mesh of the domain [xmin, xmax] × [ymin, ymax], where each grid point

(xi , yj) is given byxi = xmin + i∆x andyj = ymin + j∆y, using∆x and∆y as step

sizes in thex andy directions respectively. There arenx×ny cells, and the position

(xi , yj) is at the center of a cell. The notationCn
i j representsC(x, t) at cell (i, j) for

time tn or C(sk(0), tn) at the streamline positionsk(0) that is on the cell center

(xi , yj). Suppose that we want to computeCn+1
i j by tracing a streamline.

As described above, a streamline that originates from a cell, sk(0) = (xi , yj),

can be traced forward from Eq. (7) forξ ∈ [0,∆t]. Using a prescribed solid body

rotation flow v = [y,−x]T , we have verified that a finite number of computed

streamlines do not intersect each other (plots are not shown). In Fig. (1), the

position sk(0) is denoted by◦, and all streamlines,sk(ξ), passing through◦, for

one time step have been presented. Clearly,sk(0) is a grid point, butsk(ξ) is not.

We can neither storeC(sk(ξ)) nor usev(sk(ξ)) because our dependent variables are

stored on grid points only. As described above, the proposedmethod computes
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Cn+1/2(sk(ξ)) = Cn(sk(0)) from (10) at the first fractional step,which does not

provide withCn+1/2
i j becausesk(ξ) is not on a grid point.Clearly,Cn+1/2

i j is an un-

known quantity (on a◦ position), which can be interpolated from known quantities

Cn+1/2(sk(ξ)) at sk(ξ) positions those are neighbors of a◦ position.Looking at any

position◦ in Fig. 1, onefinds immediately that a standard interpolation method

is notapplicable for interpolatingCn+1/2
i j from values ofCn+1/2(sk(ξ)) those areat

surrounding streamline positions. Using the principle of mass conservation (10),

we have proposed the following parcel advection methodology for updatingCn+1/2
i j

at each grid cell (i, j).

Let us start with the assumption that fluid occupies the entire domain, and that

a parcel is the fluid that is contained in one cell. There arenx × ny parcels of

the same size, and each parcel is tagged with an individual concentration value,

Cn
i j . In other words,Cn

i j represents the mean concentration value of the parcel

of fluid that occupies the corresponding cell. According to the streamline nota-

tion, Cn
i j = C(sk(0)). Thus,C(sk(ξ)) represents the mean concentration of a fluid

parcel at the streamline positionsk(ξ). Eq. (10) confirms thatC(sk(0)) will be re-

distributed tosk(ξ). As soon as the streamline has been traced, we can distribute

the concentrationC(sk(0)) to another parcel of same size located atsk(ξ). With

this re-distribution ofC, the total amount ofC will never change. The idea has

been depicted schematically in Fig. 1 with broken lines, showing that the con-

centration of the parcel at◦ may be distributed at• according to a portion of the

overlapping area. Clearly, a parcel of the same size at• may overlap at most 4

cells. The idea is to distributeC(sk(ξ)) into overlapping cells.

Let sk(0) be at the center ‘◦’ of the cell (i, j) and sk(ξ) be within the cell

(i − 1, j + 1), but not at the center. Since the total concentration of the parcel
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at ◦ is ACn
i j , this parcel will contribute to changing the value ofC in cells (i, j),

(i + 1, j), (i, j + 1), and (i + 1, j + 1) according toA1Cn
i j , A2Cn

i j , A3Cn
i j , A4Cn

i j ,

whereAi ’s are portions of corresponding overlapping areas as shownin Fig. 1.

Each streamline will contributeCn
i j to at most 4 cells, covering all of the initial

concentration according to the computed overlapped area.

During the next time step, it is natural to trace the streamline that passes

throughs(ξ) using the velocity ats(ξ). Sinces(ξ) is not a grid point,v(s(ξ)) is

not known, and may be computed from the neighboring cells according to

v(s(ξ)) =
1
A

(

A1vi, j + A2vi+1, j + A3vi, j+1 + A4vi+1, j+1

)

,

whereA is the area (volume) of the 2D parcel, andA1, A2, A3, A4 are fractional

areas as depicted in Fig.1.

This procedure traces all streamlines emerging initially from the center of each

computational cell. At each step, the velocity for computing each streamline is up-

dated, assuming the velocity field has already been computed. The concentration

for each computational cell is updated at each time step as soon as the streamline

has been traced.

3. Comparison with a reference model and the heuristic mass transfer theory

This section presents the benefits of the Lagrangian model with respect toa

commonly used equivalentreference Eulerian model. A heuristic mass transfer

methodology is studied to explain the theory of numerical mass diffusion and

dispersion so that the source of error as time elapses can be identified theoret-

ically [31]. Although not in common practice, the heurisitic theory presented

by Warming and Hyett [31] is useful to understand the source of error that de-

stroys the quality of an Eulerian model, and is also useful toexplore the benefits
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of the Lagrangian modelling approach. Further details of the heuristic method can

also be found in [40].

3.1. Two reference finite difference schemes

Let us consider a finite difference discretization of a one-dimensional mass

transfer problem
∂C
∂t
+ v

∂C
∂x
= 0 (12)

as written below
Cn+1

i −Cn
i

∆t
+ v

Cn
i+1 −Cn

i−1

2∆x
= 0, (13)

whereCn
i = C(i∆x, n∆t) is an evaluation of the continuous concentration field

C(x, t) on thei-th grid point atn-th time step. This is an explicit method with a

truncation errorO(∆x2,∆t). In the limit of ∆x→ 0, ∆t → 0, the truncation error

vanishes, and the finite difference Eq. (13) approaches the actualpartial differen-

tial equation(PDE) (12). Since the scheme (13) is unconditionally unstable, it is

a common practice to use the upwind scheme:

Cn+1
i −Cn

i

∆t
+ v

Cn
i −Cn

i−1

∆x
= 0 for v > 0, (14)

which has a truncation errorO(∆x,∆t). The scheme (14) is conditionally stable if

| v∆t
∆x | ≤ 1, which means that if∆t is restricted, the numerical error does not grow

spontaneously. However, this fundamental concept of numerical stability does not

confirm whether the scheme is still appropriate for the multiphysics problem of

electro-osmotic mass transportor a higher order version of (14) is needed. Neither

the order of accuracy nor the stability condition tells us how this scheme would

predict a flow as time elapses; one can only see the effect of error accumulation

after computation of the flow for many time steps. Hereinafter, we will refer

to (14) as the reference Eulerian model.
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The following heuristic theory explains the behavior of a scheme when numer-

ical integration time elapses. To the best of authors’ knowledge, this methodology

is not widely used by the heat and mass transfer research community. Although,

the following presentation has used a usual upwind scheme, the analysis is appli-

cable to other higher order upwind schemes.

3.2. Modified partial differential equation

We can expand each of the function evaluationsCn+1
i , Cn

i+1, andCn
i−1 about the

point (i∆x, n∆t) using a Taylor series, which converts the finite difference Eq. (13)

into the continuous form

∂C
∂t
+ v

∂C
∂x
= −∆tv2

2
∂2C
∂x2
+ O(∆x2,∆t2). (15)

Eq. (15) is called the modified partial differential equation (MPDE), and MPDEs

for similar schemes can be obtained using table I from Warming and Hyett [31].

This is the actual equation solved by scheme (13) instead of Eq. (12). Neglect-

ing terms of orderO(∆x2,∆t2) and higher, we see that the MPDE contains an

extra term with an effective negative mass diffusion,νart = −v2∆t/2, and hence,

Eq. (15) produces an unstable solution. Similarly, the MPDEfor (14) takes the

form
∂C
∂t
+ v

∂C
∂x
=

v∆x
2

(

1− v∆t
∆x

)

∂2C
∂x2
+ O(∆x2,∆t2,∆x∆t). (16)

NeglectingO(∆x2,∆t2) terms, the leading order error in the MPDE (16) will in-

troduce an effective positive mass diffusion if v∆t/∆x ≤ 1, and the solution

of (16) will diffuse in time. Hence, the numerical solution will diverge from

the actual solution after many time steps. Clearly, the artificial mass diffusion

νart = v∆x/2(1− v∆t/∆x) would infer the rate of divergence, and one must have
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extremely small values for both∆x and∆t in order to haveνart ≪ 1. This anal-

ysis can be generalized to study the effects of artificial mass diffusion if the mass

transport problem (12) is directly discretized (with FD/FV/FE) on an Eulerian

mesh.

3.3. The heuristic analysis for computational mass transfer

It may be more appropriate to recast briefly - the heuristic method of Warming

and Hyett [31] to the computational mass transfer problem - without going to the

details of derivations, using the general form of the mass transport equation

∂C
∂t
+ L(C) = 0, (17)

whereL(C) represents the spatial derivative terms. If all spatial derivatives of

Eq. (17) are discretized with a collocation based FD/FV/FE method, the corre-

sponding MPDE for (17) may be written in the following general form

∂C
∂t
+L(C) =

∞
∑

p=1

λ2p
∂2pC
∂x2p

+

∞
∑

p=0

λ2p+1
∂2p+1C
∂x2p+1

(18)

whereλ2p or λ2p+1 is a function of∆xp and/or∆tp. On the right hand side of (18),

the even order derivative terms will introduce artificial diffusion of mass, and the

odd order derivative terms will introduce artificial dispersion of mass. As shown

by Warming and Hyett [31], a necessary condition for the stability of a finite

difference scheme is

(−1)pc−1λ2pc > 0, (19)

where pc corresponds to the lowest order non-zero term in the right hand side

of (18). For the finite difference scheme (13), we havepc = 1 and (−1)pc−1λ2pc =
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−∆tv2/2, and hence, the scheme does not satisfy the necessary condition for sta-

bility. Similarly, we can show that the scheme (14) does satisfy the stability con-

dition (19). One observes that a discretization must be adopted so that the MPDE

does not contain any even order derivatives. Otherwise, small values of∆x and∆t

are necessary to makeλ2pc small. This study encourages us to develop a method-

ology where the numerical scheme yields an MPDE with no even order derivative

terms to at least the lowest order error term.

3.4. Spurious mass diffusion of the reference model

MPDE (16) asserts that the reference model (14) introduces aleading order

error that can be quantified by a mesh Peclet number such that1
Pe =

v∆x
2 (1− v∆t

∆x ).

We keep the same symbolPe (for ‘Peclet’ and ‘mesh Peclet’ number) because

mesh Peclet number is used only in the present subsection. Clearly, theerror may

be minimized by reducing∆x and∆t, and a large meshPe indicates a small error.

To study the effect of artificial mass diffusiondue to this errorin the reference

model using the heuristic theory, consider a simplified model of (16), given by

∂C
∂t
=

1
Pe

∂2C
∂x2

, (20)

along with the initial Gaussian distribution

C (x, 0) =
exp

(

−x2

4/Pe

)

√
4π/Pe

, (21)

whereC decays rapidly with respect tox. Eq. (20) models the effects of artifi-

cial mass diffusion as time elapses, and can be solved along with the boundary

condition

C→ 0 as |x| → ∞
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such that

C (x, t) =
exp

(

−x2

4/Pe(t+1)

)

√
4π/Pe(t + 1)

. (22)

Using the scales (e.g. h,U) listed in Table 2, we can estimate a dimensional

diffusion coefficient D for a corresponding value of the mesh Peclet numberPe.

The solution (22) has been plotted in Fig. 2 for several values of 1
Pe, 2×10−3 (D =

10−10 m2/s), 10−3 (D = 5×10−11 m2/s), 5×10−4 (D = 2.5×10−11 m2/s), 10−4 (D =

5 × 10−12 m2/s), 5× 10−5 (D = 2.5 × 10−12 m2/s). Clearly, only a negligible

physical diffusion(10−10 m2/s≤ D ≤ 2.5×10−12 m2/s) is modeled with 2×10−3 ≤
1
Pe ≤ 5 × 10−5. Since the estimated value ofD is small, the interpretation of the

leading order error in (16) may be misleading. With equivalent scaling, Fig. 2

exhibits notable spreading ofC for only about a factor of 32 decrease in the mesh

Peclet numberPe due to the error. This means the error identified by (16) may

have a serious impact in some cases. As explained below,one can estimate the

computational burden needed to avoid the artificial mass diffusion.

In a situation where the physical diffusion coefficient isD = 2.5× 10−12 m2/s,

the actual Peclet number takes a value 1/Pe= 5×10−5. In this case,the numerical

solution should agree with the narrow profile ‘—’ in Fig. 2. However, if the mesh

Peclet number for the MPDEdiffers from actualPe such that 1
Pe = 2 × 10−3

due to a coarse resolution (∆x and∆t), the numerical solutionmay converge to

the shallow profile ‘-◦-◦-’ in Fig. 2 instead of converging to the expected narrow

profile ‘—’, which is a clear divergence of the solution. In the present example,

the artificial mass diffusion can be minimizedfrom 2×10−3 to 5×10−5 by refining

the mesh uniformly at least a factor of 32 in each direction,as well as the time step

∆t, in order to get a mesh Peclet number such that1
Pe = 5 × 10−5. To do so with

the reference model, the computational complexity would increase by a factor of
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32, 768 (about 104) for a 2D simulation, and by a factor of 1, 048, 576 (about 106)

for a 3D simulation, assuming that both∆x and∆t must be reduced. Note that

such an increase of grid points may have other numerical artifacts, and clearly, the

approach is not appropriate.

The theoretical study presented in this section shows that acareful investi-

gation of numerical error in a classical computational model is necessary, where

the transport term is discretized directly on an Eulerian mesh. The proposed La-

grangian model is one way to eliminate the spurious mass diffusion, and brings

computational advantage saving the complexity by about a factor of 104 for the

2D electro-osmotic mass transfer problem (2× 10−3 ≤ 1
Pe ≤ 5× 10−5). Improving

the solution of a computational model without overburdening the computational

work is the second of two unresolved challenges discussed inthe introduction.

The proposed development is now validated with numerical experiments. Using

2D simulations of both the Lagrangian model and the reference model, we have

verified in the next section that the Lagrangian model has addressed the modelling

problem that has been reported in the present section.

4. Results, verification, and validation

In all color figures presented in this section, blue and red colors represent the

dimensionless minimum and maximum values respectively of the corresponding

quantity, and the yellow color indicate a zero. Further, x-axis representsx/h and y-

axis representsy/h, unless otherwise indicated in the corresponding figure, where

h is the length scale.

21



4.1. Incompressible flow computation

The 2D Taylor-Green vortex flow is a model that is widely used to verify

numerical accuracy of incompressible flow computation, where the velocity and

pressure satisfying the incompressible Navier-Stokes equation are defined by

u (x, y, t) = − cos(2πx) sin(2πy) exp
(

−8π2t/Re
)

, (23)

v (x, y, t) = sin(2πx) cos(2πy) exp
(

−8π2t/Re
)

, (24)

P (x, y, t) = −1
4

(cos(4πx) + cos(4πy)) exp
(

−16π2t/Re
)

. (25)

Fig. 3 shows a good agreement between the simulated velocityand the exact ve-

locity (23). This model has produced equivalent results with various values of∆x,

∆y, and∆t. These tests confirm the accuracy of the velocity solver.

4.2. Numerical Simulation of Electro-Osmotic Flow

To simulate an electro-osmotic flow, necessary dimensionalparameters and

scales are listed in Table 1 and Table 2 respectively. The initial concentration field,

C(x, 0), having a non-zero value identified with the red color is shown in Fig. 4(o).

The values of dimensionless parameters for the present set of simulations are

1
Re
= 20, 5×10−5 ≤ 1

Pe
≤ 2×10−3, α = 1.27×105, κ2 = 4280, andη = 0.28,

where an increase inPereflects a decrease in the dimensional diffusion coefficient

D. For 1
Pe = 5×10−5, we haveD = 2.5×10−12m2/s. With such a small value ofD,

the effect of diffusion is negligible. Therefore, an initial scalar plugC(x, 0) that

is transported in a microchannel with an electro-osmotic flow is not expected to

spread or diffuse significantly,i.e. mass transport is dominant over mass diffusion.

Furthermore, Eq. (5) also states that
∫

V
C2(x, t)dV is conserved for an arbitrary
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control volumeV with no solid boundaries ifD = 0. In applications,D , 0, and

a flow is often confined within solid boundaries. Hence, an understanding of the

transport ofC with respect to increasing/decreasingPe explains how accurately

the numerical model has simulated the actual mass transfer problem.

To test if the present model simulates the flow in a microchannel so that the

mass transfer remains dominant over mass diffusion, a number of numerical ex-

periments have been performed using both the proposed Lagrangian model and a

reference Eulerian model. Some representative and equivalent sets of datum from

both model have been presented in Fig. 4. Clearly, the Lagrangian model resolves

the effect of increasingPe more accurately compared to the Eulerian model be-

cause the spatial spreading of the initialC (e.g. Fig. 4(o)) decreases with respect

to increasingPe.

4.3. A quantitative assessment and theoretical justification for the proposed model

For the first set of numerical experiments, we have presentedin Fig. 4(a-e) the

time evolution of the initialC using the Lagrangian model for1Pe = 2×10−3, 10−3,

5× 10−4, 10−4, and 5× 10−5 at t = 4.4, when the sample has been transported to

about the middle of the channel. Note that the diffusion is strong for1Pe = 2×10−3,

but weak for 1
Pe = 5 × 10−5. As expected, the increase ofPe has reduced the

diffusion of the concentration fieldC.

In the second set of experiments, we have repeated these simulations using the

Eulerian model, and the results are presented in Fig. 4(f - j), where the effect of

increasingPe is clearly not resolved. The Eulerian model has failed to simulate

the transport dominated flow.

First, the failure of the Eulerian model is explained from the theory presented

by (16), whereνart is constant for fixed∆x and∆t. Although Pe has been in-
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creased, artificial mass diffusion remains dominant over mass transfer phenom-

ena. Second, the Lagrangian simulation of mass transfer is fully consistent with

theoretical analysispresented in section 3.3 and in Warming and Hyett [31]. Care

must be taken while interpreting these Lagrangian simulations because the heuris-

tic theory, when applied to an equivalent Eulerian model, only indicate that artifi-

cial diffusion is not dominant over physical diffusion in the present Lagrangian

simulation. Under similar computational and physical circumstances, the La-

grangian model resolves the physics, when the diffusion coefficient varies between

O(10−10 m2/s) andO(10−12 m2/s). The ability of resolving variation in such a small

diffusion coefficient is one important aspect of the present Lagrangian model.

From the distributions ofC presented in Figs 4(a-e), we have computed the

profiles ofC along the liney = 0.5, and have presented the result in Fig. 5(a).

For the ease of comparison, the initial profileC(x, 0.5, 0) from data in Fig. 4(o)

has been translated and presented in Fig. 5(a). Clearly, the width of the Gaussian

mass distribution increases ifPedecreases, which is in good agreement with the-

oretical model of mass diffusion. In addition, the height of the Gaussian profile

is proportional to
√

1
Pe (e.g., Eq. (21)). The maximum values for each distribu-

tion of C from Fig. 4(a- j) have been compared with the theoretical height
√

1
Pe

in Fig. 5(b). The Lagrangian model appears to fit well with the theoretical re-

sult, which shows a large deviation from Eulerian model. These results present a

quantitative assessment for the proposed model’s ability to resolve mass transfer

phenomena, and bring potential improvements to the field of computational mass

transfer modelling.
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4.4. Quality of solution as time elapses

Let us now study the performance of the Lagrangian model at different time

intervals, where streamlines are computed by solving the system of ODEs (7)

numerically, using a forward in time method. It is importantto understand if

truncation errors accumulate, the global solution will be affected as integration

time elapses. This is examined by simulating electro-osmotic transport at three

different time intervals, and by comparing simulations using the Lagrangian and

the Eulerian models. In Figs 6 (a)–(c), simulatedC(x, y, t) profiles using the La-

grangian model att = 2.2, t = 4.4, andt = 6.6 have been presented, where we see

that the concentration field has roughly the same width as time increases. Since

1
Pe = 5 × 10−5, the diffusion is negligible, and we do not expect to see widen-

ing of the initial sample as it is transported along the channel. The Lagrangian

model’s result does not indicate any accumulated diffusive behavior at these three

time intervals. However, plots ofC(x, y, t) in Figs 6 (d)–(f) exhibit a noticeable

widening in the concentration profile with increasing time.These plots have been

produced using the Eulerian model, where the accumulation of error as time in-

creases is clearly visible. Note that both the Lagrangian and Eulerian models have

equivalent order of accuracy. These results indicate that the Lagrangian model has

controlled the error at various time intervals as soon as thesample is transported

along the channel, which is not the case with the Eulerian model. This means that

the numerical treatment of advection along the streamline helps to avoid the error

accumulation compared to a direct discretization of advection terms.

4.5. Comparison between electro-osmotic and hydrodynamictransport

Patankar and Hu [8] explained that an electro-osmotic pumping is optimized

when a rectangular sample plug is used,i.e., the distribution ofC(x, t) needs
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to be approximately rectangular as in Fig. 7(a). Pressure gradient forces may

lead to a parabolic distribution of the transported sample in an experiment. The

present model can be used to study the optimal pressure gradient that needs to

be maintained during an experiment. Here, we have studied the development

of the parabolic shape when the sample is transported with combined electro-

osmotic and hydrodynamic forcing. Fig. 7 displays the concentration fields at

t = 4.4 with varying values of the applied pressureP0 at the input. AsP0 is in-

creased, the parabolic nature of the concentration field, which is characteristic of

a pressure-driven Poiseuille flow, becomes more dominant. This experiment con-

firms that the proposed Lagrangian model simulates both the hydrodynamic and

the electro-osmotic transport without introducing artificial damping. Moreover,

the Lagrangian model has the potential to analyze the flow andto determine the

order of magnitude of the pressure dropa priori to a typical experiment if other

equivalent parameters are known.

5. Conclusion, contribution, and future direction

In this research, we have developed a Lagrangian methodology for modelling

electro-kinetic mass transport in microchannels, where typical length scales of

the flow are on the order of microns. Our methodology proposesto model the

time evolution of mass transport phenomena using a streamline coordinate, where

streamlines are computed numerically from a given velocityfield. In this ap-

proach, a two- or three-dimensional advection equation is converted into a one-

dimensional equation in the streamline coordinates, whichis solve analytically.

Since streamlines are attached to the dynamics of a flow, thishelps to resolve the

flow more accurately as well as saves computational time.Using a fractional time
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stepping algorithm, the effect of diffusion is modelled with amultilevel method

employing asecond order trapezoidal or Crank-Nicolson scheme.When the mesh

is refined for resolving the Debye layer and other interfacial structures, the mul-

tilevel solver helps to preserve a linear relatioship between the number of grid

points and the computing time. To transfer data between streamlines and grid

points, an optimal interpolation scheme is studied withoutviolating the desired

accuracy. We have studied how the heuristic theory of Warming and Hyett [31]

can potentially be used to identify source of errors destroying the physical char-

acteristics of a simulated flow.Comparisons witha computationally equivalent

Eulerian modelas well as with theoretical estimateshave revealed that the La-

grangian model simulates the flow more efficiently.

There are several potential extensions of this work to be considered. First, the

approach can be extended to simulate a 3D electro-kinetic mass transfer problem

in a complex geometry. For this purpose, the present development has been imple-

mented in the primitive variables – velocity and pressure. The present multigrid

routine must be extended and verified for a 3D flow. Second, themodel can be

extended to take advantage of multi-core clusters, implementing and extending

the present code with Message Passing Interface (MPI) libraries. Third, Figs 4

and 7 indicate that the spatial mesh may only be refined locally in the region,

whereC has a sharp gradient. Thus, a suitable adaptive mesh refinement (AMR)

approach may improve the present Lagrangian model. To the best of our knowl-

edge, a combined application of Lagrangian approach and AMRhas not been

studied extensively despite a few potential attempts. Suchan extension of this

work requires the development of advanced data structures,such as a binary tree,

and the implementation of polynomials with compact supportso that discretiza-
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tion of governing PDEs can be implemented in such a way that takes advantage of

the ease of finite difference techniques. These extensions are currently in progress.
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Kinematic viscosity of buffer solution ν 10−6 m2/s

Electrophoretic mobility ˜µ 1.4× 10−8 m2/(V s)

Boltzmann constant B 1.381× 10−23 J/K

Elementary charge e 1.602× 10−19 C

Temperature T 300 K

Permittivity of buffer solution ǫ 6.95× 10−10 C2/N m2

Buffer ion density n 3.18× 10−4 mol/m3

Avogadro’s number A 6.022× 1023 mol−1

Debye layer thickness D 765 nm

Table 1: Dimensional parameters for modelling electro-kinetic mass transfer in a microchannel.

These parameters have been used in Section 4.
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Channel length H 4× 10−4 m

Channel width h 5× 10−5 m

Velocity scale U 10−3 m/s

Time scale h/U 0.05 s

Pressure scale ρU2 10−3 Pa

Applied pressure at the inputP0 48× ρU2

Pressure at the output P1 1× ρU2

Wall potential scale ζ 107 mV

External potential scale φ 1 V

Applied voltage at the input Φ 4× φ

Applied voltage at the output 0 V

Computational resolution nx × ny 1025× 129

Table 2: Necessary scales and resolution used in the numerical simulation of electro-osmotic flow

presented in Section 4.
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Figure 1: Initially, a fluid parcel occupies a computationalcell, and cells are shown with a solid

line as the boundary, where the center of a cell is marked by◦. Each cell center◦(i, j) is the

streamline positions(tn). Solid curves are streamlines that passes through◦, which have been

traced by solving (7). For a particular cell, the positions(tn+1) on the streamline has been marked

by •, where the associated fluid parcel is shown with a broken line(− − −). Clearly, this parcel

occupies 4 neighbouring cells.
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Figure 2: Artificial mass diffusionis examined with a simple ‘toy’ model, where exact solution is

known. The solution,C(x,T), at some fixed time,t = T for varying values of inverse mesh Peclet

number, 1
Pe: 2× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5. As 1

Pe decreases, the concentration profiles

become steeper. Clearly, a smaller value ofPecorrespond to more spreading or diffusion of mass.

This shows that the order of magnitude for the local truncation error may vary by a factor of 30 to

40, but this small error has a remarkable effect on the finite time mass diffusion.
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Figure 3: The solutionu(x, y, t) of the Taylor-Green flow: (a) numerical solution after 100 time

steps, (b) exact solution at the equivalent time,t. The numerical solution exhibits a good agreement

with the exact solution, verifying the accuracy of the code.The domain has lengthx/h = 1 and

width y/h = 1.
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(o) Initial C(x, y, 0)

Lagrangian Eulerian

(a) 1
Pe = 2× 10−3 ( f ) 1

Pe = 2× 10−3

(b) 1
Pe = 1× 10−3 (g) 1

Pe = 1× 10−3

(c) 1
Pe = 5× 10−4 (h) 1

Pe = 5× 10−4

(d) 1
Pe = 1× 10−4 (i) 1

Pe = 1× 10−4

(e) 1
Pe = 5× 10−5 ( j) 1

Pe = 5× 10−5

Figure 4: The effect ofPeon the concentrationC(x, y, t) at t = 4.4 in a channel of lengthx/h = 8

and widthy/h = 1. (o) Initial concentration field,C(x, y, 0). SimulatedC(x, y, 4.4) for various

1
Pe are shown in subsequent images: (a-e) Lagrangian and (f - j) Eulerian upwind. The values of

1
Pe are chosen as follows. (a, f ) 2 × 10−3, (b, g) 1 × 10−3, (c, h) 5 × 10−4, (d, i) 1 × 10−4, and

(e, j) 5 × 10−5. Clearly, we see that the Lagrangian method has resolved theeffect of diffusion

coefficient. The Eulerian method is plagued with artificial numerical diffusion.
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Figure 5: (a) Profiles ofC(x, 0.5, 4.4) for 1
Pe = 2 × 10−3, 5 × 10−4, 5 × 10−5, and the initial,

C(x, 0.5, 0), which has been translated for comparison purposes. As expected, distribution ofC

widens and its maximum value decreases ifPe increases. (b) Corresponding to the results in

Fig. 4, the maximum values ofC for increasingPeare shown. Comparison of the results from the

present model and the reference model shows that the presentresult agrees well with the theoretical

prediction.

40



0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1

(a) (d)

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1

(b) (e)

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1

(c) ( f )

Figure 6: Concentration profiles for1Pe = 5 × 10−5 at (a)/(d) t = 2.2, (b)/(e) t = 4.4, and (c)/(f)

t = 6.6 in a channel of lengthx/h = 8 and widthy/h = 1. Figures (a), (b), and (c) were calculated

using a Lagrangian approach for the advection term, while figures (d), (e), and (f) were calculated

using an upwind scheme for the advection term.
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Figure 7: Combined effects of electro-osmotic and hydro-dynamic transport. Concentration fields

are simulated with the Lagrangian model for1
Pe = 5× 10−5 with increasing pressure values at the

input: (a)P0 = 0.048 Pa, (b)P0 = 0.24 Pa, and (c)P0 = 0.48 Pa. The rectangular sample plug

takes a parabolic shape if the input pressure increases.
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