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Abstract

The computational modelling of multiphysics mass transfex microchannel is
a challenging endeavour. This article has proposed andataeli a Lagrangian
methodology for modelling coupled physics using near ogticomputational ef-
forts. This new development has been verified and comparddaweference
Eulerian finite diterence model. A heuristic theory for computational massta
fer phenomena has been studied. At high Peclet numbers \ileereterence
Eulerian model fails, the Lagrangian model resolves abegtimotic mass trans-
fer, showing a good quantitative agreement with theorketoalysis. The La-
grangian model also helps to estimate necessary paransetehat an optimal
electro-osmotic pumping can be designed in a microcharired.computational
efficiency of the Lagrangian model has been examined, showatathincrease
of the Peclet number by a factor of 32 increases the globapotational com-
plexity by about a factor of 0f the reference Eulerian model were used. This
verifies the optimal performance of the Lagrangian model.
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kinematic viscosity
density
wall potential

external potential

u
P

t

scale for external potentialU

scale for wall potential
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Boltzmann constant
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absolute temperature
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ion density
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streamline parameter
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velocity vector
pressure

force

time

velocity scale
channel width
channel length
gradient

Laplacian
concentration flux
concentration
diffusion codicient
grid spacing

time step
resolution

general partial dferential operator

Peclet number

fractional time step
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1. Introduction

The study, design, and analysis of microfluidics and nardifisiare widespread
in many scientific and industrial contexts [1-4]. For examplinderstanding
the electro-osmotic micro-dynamics is important in vasionicrofluidic systems,
such as microelectromechanical systems (MEMS), bioldgiuaroelectrome-
chanical systems (BioMEMS), and lab-on-a-chip [5-7]. A patational model
- solving the mass and momentum conservation laws numigrice a virtual
experimentation of such micro-dynamics, and has the pateot advance the
fundamental knowledge of physical, chemical, and biolalggrocesses in areas
such as micro-fabrication, biotechnology, and portableads. There is a grow-
ing interest in using computational models in microfluideésearch.This article
presents a novel computational model for simulating ebecgmotic mass trans-
fer in a microfluidic device.

In the past two decades, a number of articles have been padigudying the
usefulness of computational models for simulating elekinetics in microflu-
idic devices. Among the pioneering works, Patankar and Husti&died the de-
velopment of a steady state three-dimensional numericaeinfor simulating
electro-osmotic flow in a cross-channel microfluidic devite their work, a fi-
nite volume approach using the SIMPLE class of pressureesalas adopted to
computationally imitate the experimental investigatidriHarrison et al. [9]. As
of the writing of this article, the computational model ot&aar and Hu [8] has
received over 400 citations, and has provided guidelindégrtber computational
developments for scientists and engineers who have imseresomputational
modelling of electro-kinetic phenomena [e.g. 10-14]. Qkeryears, finite dier-
ence (FD) [15-17], finite volume (FV) [8, 18], and finite elamh@E) [10, 19, 20]



methods have been commonly used by researchers invesgigafiuid flow in
microfluidic devices [21].Other methods such as the level set method [22], La-
grangian particle methods [23] or higher order weigfgssdentially non-oscillatory
(W/ENO) [24] schemes are not fully examined in the field of miariofic mod-
elling [e.g. 25].A brief review of recent literature indicates thiae best numerical
algorithm for simulating flows in microfluidic devices is rfatly understood, and
significant improvements in two directions are necessartatang full advantage
of advanced computational methods in the field of microfturdisearch. First,
multilevel and multiresolution methods [26] may resolveresneconomically the
electric double layer and the moving sharp interface betvee transported fluid
and the resident fluid. Second, fully capturing the coupledtiphysics nature of
the electro-osmotic mass transfer would provide soplatga modelling strate-
gies. The drawbacks of classical numerical modelling is thiection - particu-
larly for mass transfer in micro-fluidic devices - are notyidddressed by recent
computational micro-fluidic models. Current authors ater@sted in combining
the benefits of multiple advanced computational methodetogsuch as the La-
grangian method and the multigadultilevel solver- into integrated modelling
frameworks to address the latter of the above issues. Ttilgdtes the devel-
opment of simpler and less expensive methodologies for fioglenass transfer
problems that involve more than one physical phenomenon.
Electro-hydrodynamics or electro-kinetic phenomenarofeders to a combi-
nation of electro-osmotic and electrophoretic transp®rt [28]. The topic is a
scientific problem of multiphysics modelling, where at keisee physical phe-
nomena - electrostatics, mas®mentum conservation, and ion transport - must

be modelled simultaneously. A computational model wousibhee these physics



by solving a simultaneously coupled system of governingaggos that include
the incompressible Navier-Stokes equation, the PoissitmBann equation, the
Laplace equation, and the Nernst-Planck equation. Cortipoéd modelling of
each of these physics requires careful attention to desygsophisticated algo-
rithms. First, the incompressible Navier-Stokes equatmurples the velocity and
pressure, which requires special treatment [e.g. 29]. Ailewél method is exam-
ined in this article to address this problem. Second, thexdtdpPlanck equation
takes an almost hyperbolic form because the transport sfigprincipally gov-
erned by inertial fects [ch. 11, 30]. This article proposes the use of a Lagaangi
methodology and examines the potential of this techniquereHwve note that a
classical computational problem of mass and momentumfaansll often aim
to improve the stability of a scheme, the order of numericalugacy, and the
speed of computation, but a computational multiphysicsetiod) approach will
aim for a balance between numerical spaeduracy, and the quality of coupled
physics. Hence, a successful computational model of eldatretic angor hydro-
dynamic transport in a micro-device remains challenginge @oal of the present
article is to identify the source of computational errorttti@stroys the quality of
the coupled physics, and to postulate a modelling frameworthat the need for
computing speed and accuracy does not sacrifice the quatyupled physics.
This article introduces a streamline-based Lagrangianpcoational model
for the numerical simulation of electro-kinetically driveransport phenomena in
microfluidic devices. To the best of authors’ knowledge, eohreported com-
putational developments use such a streamline-basedngigreapproach. Note
that instantaneous velocity vectors are tangential tastli@es, and these stream-

lines do not start or end inside the fluid regio@learly, streamlines are more



relevant to the physics of the flow than randomly seeded fimutaber of parti-
cles those are commonly traced in classical Lagrangian lmo@léwo- or three-
dimensional transport law can therefore be reduced to adonensional trans-
port problem in the streamline coordinate. This one-dinwrad problem can
be solved analytically, improving the modelling qualtyd saving the computing
time. Thestreamline baseldagrangian approach provides a natural framework for
modelling transport phenomena, where a finite number of chegpstreamlines
model the time evolution of electro-kinetic transport athPeclet numbers.
Principal investigations of this article include the follmg. First, we want to
study on the benefits of Lagrangian modelling approach foukiting microscale
flows, and introduce a streamline-based Lagrangian methecbnd, we want to
extend the scope of the heuristic stability analysis me{Ba¢i showing how to
identify source of computing error in microscale multipicgssimulations. Third,
we want to explore the combined benefits of multilevel andraagian methods
so that the quality of the solution is improved with optimahgputational &orts.
In Section 2, the governing equations and the proposed imagl@pproach
are presented. In Section 3, we have studied the potentialfth a Lagrangian
approach to model a micro-scale flow, and compared its paeoce with respect
to a classical approach. We have also studied a heuristepther computational
mass transfer phenomena. In Section 4, results of numesipariments are dis-
cussed. In Section 5, a brief summary, present contribsitind potential future

research directions are outlined.



2. The streamline based Lagrangian modelling

2.1. Governing equations

In 1976, Batchelor [32] introduced the notion of microhydyoamics for
modelling fluid flows with characteristic length scales &t dinder of microns (@m
= 10"°m). This idea remains at the core of multiphysics mass temmabdelling
at micro-scale, despite many other attempts [33]. Thusgtverning equations
for a micro-scale electro-osmotic flow can be derived fromftmdamental prin-
ciples studied earlier by Debye and Huckel [34], Batch¢¥@], and Helmholtz
[35]. Assuming that the fluid with suspended charged padicd Newtonian and
incompressible, the mass and momentum conservation l&egtea dimension-
less forms

V-u=0, (1)

ou 1_,
EJFU'VU__VPJFR_eVUJFf’ (2)

where the Reynolds number is defined Rg = UTh The length ) and veloc-
ity (U) scales are listed in Table 2. For a list of dimensional patans, such as,
see Table 1. The forckis a result of the combinedfect of an externally applied
electric field and the potential due to the charge at the ddvouindary that are
exerted simultaneously on a fluid with a large number of sudeé species [e.g.
see 8]. As explained by Batchelor [32], a Gibbs distribufienthe anion of the
form,nA exp(%), can be used to model th&ect of the wall potential. Taking the
charge density as the sum of charge densities for both tieneaind the anions,

and using the Debye-Hiickel approximatidd? = L&,

we have the following

Helmholtz equation for the wall potential

VA = K%y, (3)
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wherex? = g—zz. Accordingly, the externally applied potential satisfies Laplace’s
equation
V2 = 0. (4)

Hence, the electro-osmotic forck, is given by [e.g. 8, 16]

f =ayVo,
where
I
pU2D2’

Letting the concentration of the passive suspended spkei€éx, t), the fluxI’
of the species can be given by= uC — (nV¢)C, which accounts for the hydro-
dynamic flux,uC, and the electrophoretic fluxyV¢)C [36]. The concentration
satisfies the following form of the dimensionless NernstrAek equation [ch.11,
30]

oC

1 2
Eﬁ‘V(U—I]VgO)C—P—eV C, (5)

where we have assumed that the derivativeg afe negligible compared to that
of ¢ in regions far from the boundary of the device, and dimeregmelec-
trophoretic mobility isy = ’L‘J—‘f] Note the Peclet number is defined by

Uh
Pe= D
where a largePe corresponds to a smallfflision codicientD. The governing
equations (1-5) model an electro-kinetic flow in a microatelthat can be driven
by an electric force or a pressure drop, where all dimensipasmeters and
scales - as listed in Tables 1, 2 - have been combined intodimuensionless

guantities:Re Pg «a, andk.



2.2. Geometry and boundary conditions

To solve the set of model equations (1-5) numerically, aarggalar channel
of width h and lengttH with walls along thex-axis is used in the present develop-
ment. No-slip and Neumann boundary conditions are assuanegdd velocity at
walls and the inpybutput boundaries resepectively. For the pressure anagoenc
tration, boundary conditions are Neumann at the walls amitidet at the input

and output.

2.3. Numerical method

All spatial derivatives in Eqgs (1-5) have been computed witecond order
accuracy. An implicit-explicit (IMEX) method is used to sel(2), where the
viscous forces are treated implicitly using a second-o@tank-Nicolson method.
With the help of Eq. (1), the nonlinear inertial terms in (2@ @xpressed in their
flux form, and treated with the explicit Euler method. A fiac@l time integration
method has been employed to Eqg. (5) so that the mass tramsmolse modelled
with the proposed Lagrangian method, and maffsislion can be solved with the
Crank-Nicolson method.

The electro-osmotic forcé is computed by solving Egs (3-4) before starting
the time integration. At each time step, the pressure is cbeapby solving the

Poisson equation
VZ(P+“—;):V-[f+ux(vXu)]. (6)

Egs (3,4,6) and two other Crank-Nicolson systems are sakggty a multigrid
algorithm [16]. A distinct feature of the present work indés the discretization
of (6) employing a modified version of the staggered grid apph [37], where
Piroj —2Pij+ Pigj L P2 - 2P+ Pij»

VZP ~
4AX? 4Ay?




More specifically, instead of using an actual staggered ¢l éfect of a stag-
gered grid is modelled through careful discretization & firessure equation,
where the pressure pointis located at the center of 212lock of cells along with
velocity points at the faces of this block. This configuratieelps with the imple-
mentation of a multigrid algorithm as well as takes advaataighe methodology
developed in [37]. This approach conserves both mass amgyeaethe order of
local truncation error [16]. Boundary conditions for thegsure need extra ghost

points.

2.4. Lagrangian modelling theory
2.4.1. A brief overview of the classical Lagrangian apptoac

Lagrangian methods are already well-known, and a detadeww is out-
side the scope of this article. Briefly, Koumoutsakos [23je®ed multiscale
flow simulation techniques using Lagrangiparticle methods. Among various
approaches, vortex methods (VM) and smoothed particledayaramics (SPH)
methods arefécient, stable, and accurate techniques for computing sheep
faces such as vortex sheets. Lagrangian methods also haweatks, such as
significant increases in computational complexity due taoopkcal re-meshing of
distorted Lagrangian mesh. In some applications, thesgldreks can be over-
come with an appropriate implementation [38]. The main idédagrangian
methods is to avoid a direct discretization of advectivavdéres, where the
time evolution of inertial &ects are modelled by following material elements of
a fluid. In this article, we have studied how such an approa&gpshn accurately
modelling mass transfer phenomena. The following Lagmamgiethod is based
on the computation of streamlines, andfelis from existing Lagrangian meth-
ods [23].
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2.4.2. Streamline based Lagrangian modelling
Let us start with a known divergence free velocity field [u,v]", which may
have been available through a numerical calculation. Btiieas of this flow are
curves, where the velocity field is tangential, and are ddfime
ds _ds
u v
These streamlines,= [s;, ] 7, can be parameterizes(¢), and traced by solving

the differential equation
ds

d_é: =
using an appropriate numerical ODE solver routine [e.g. 38henv is the ve-

v (7)

locity field of an incompressible flow, streamlines will notersect, begin, or end
inside the fluid. For a given physical location with the index (ki, k»), only one
streamline s¢(¢), will pass through this position. F@r= 0, if we know a refer-
ence positions,(0), of a streamline that is marked with the indexEq. (7) can
be solved numerically using the initial conditisg(0) to find s¢(¢) for somes > 0
or ¢ < 0. The selection o$,(0) may be arbitrary ok may represent the index of
a grid point. For a fixed value @&f, the streamlines,(¢), traces physical points
(x,y), and hence, we can express the veloaify, y) by v(sk(¢)). During the nu-
merical computation o$y(¢) at discrete values @f, the right hand sidey(sy), of
Eqg. (7) can be updated sequentially sinCe y) is assumed to be pre-computed.
This process traces the parametric cusy@) that passes through(0). To test
the process, consider a given velocity [y, —x]T, for a solid body rotation flow.
Streamlines passing througk(0) have been computed with this process, and are
presented in Fig. 1, whererepresent the positiosk(0).

Since the velocity field is tangential to the streamlines Mélocity is given by
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the directional derivative of a streamling,along the direction o such that
v=Vv-Vs (8)

Combining Eq. (7) and Eqg. (8), the directional derivativerg a streamline can

also be parameterized so that
d

d_é‘: =
and the directional derivative of any scalar fi€l¢k, t) can be written as

v-V,

% =v-VC. (9)

The directional derivative along a streamline is benefimahe computation of
the numerical solution of (5) when using a fractional timepging method. The
first fractional time step assumes that the total velocityu — nVe is divergence

free,V -v =0, andD = 0 such that (5) reduces to

% + g =0. (10)

In Eq. (7),¢ is a time like parameter, and for each valuefptve have a corre-
sponding streamline positics{¢). However, in Eq. (10)¢ is a space like param-
eter, describing the advection Gfalong a streamling(¢). Furthermore, Eq. (10)
states that a given concentration fi€lt{s(¢)) att" propagates along the stream-
line s(¢) at a constant speed, and the solution of (10) can be obtamegtically
such thaC(s(¢), t) = C"(s(¢—t)). In the&-t plane, the characteristic curves of (10)
never intersects each other, and hence, the solution oig1)ique. Therefore,

at the first fractional time step, the present method congitie, t) according to
C2(s(¢), At) = C'(S(¢ — A),
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wheres(¢) is the streamline position at present time; At, ands(é — At) is the
streamline position at a previous tintes O.
The second fractional time step accounts for tffeat of diffusion, using

C”+%(s(§), At) as the initial condition assigned at all valuesxof s(¢), where

aCc 1
i P—eVZC. (11)

The dffusion problem (11) is solved with a second order Crank-Smolscheme,

where a fast multigrid solver is used to solve a linear sysibahgebraic equations

at each time step.

2.5. Streamline tracing algorithm and computation of C

In the present implementation, we use a uniformly refinedcsaired finite
difference mesh of the domair.jin, Xmax X [Ymin» Ymaxl, Where each grid point
(%, Y;) is given byx = Xmin + IAX andy; = Ymin + jJAy, usingAx andAy as step
sizes in thex andy directions respectively. There amgx ny cells, and the position
(%, Y;) is at the center of a cell. The notatiﬁ)f] represent€(x, t) at cell (, j) for
time t" or C(s¢(0),t") at the streamline positiog(0) that is on the cell center
(%, Y;). Suppose that we want to compmﬁlﬁz‘l by tracing a streamline.

As described above, a streamline that originates from a §€0) = (X, Y;).
can be traced forward from Eq. (7) fére [0, At]. Using a prescribed solid body
rotation flowv = [y,—x]T, we have verified that a finite number of computed
streamlines do not intersect each other (plots are not shown Fig. (1), the
positions,(0) is denoted by, and all streamlinessc(¢), passing through, for
one time step have been presented. Cleakl@) is a grid point, bus(¢) is not.
We can neither stor€(sx(¢£)) nor usev(sg(£)) because our dependent variables are

stored on grid points only. As described above, the proposeitiod computes
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C™1/2(g(€)) = C"(sc(0)) from (10) at the first fractional stepyhich does not
provide withC{;""/* becauses,(¢) is not on a grid pointClearly,C{;""/* is an un-
known quantity (on & position), which can be interpolated from known quantities
C™1/2(5,.(£)) at s (€) positions those are neighbors of gosition.Looking at any
positiono in Fig. 1, onefindsimmediately that a standard interpolation method
n+1/2

is notapplicable for interpolating;;

surrounding streamline positions. Using the principle alssiconservation (10),

from values ofC™/?(s,(¢)) those areat

we have proposed the following parcel advection methoddmgjpdatingpi’}”/ 2
at each grid celli( j).

Let us start with the assumption that fluid occupies the exiirmain, and that
a parcel is the fluid that is contained in one cell. Therergre n, parcels of
the same size, and each parcel is tagged with an individunectdration value,
Cij- In other words,Ci; represents the mean concentration value of the parcel
of fluid that occupies the corresponding cell. Accordinghe streamline nota-
tion, C{} = C(s¢(0)). Thus,C(sk(¢)) represents the mean concentration of a fluid
parcel at the streamline positia(¢). Eqg. (10) confirms thaC(sy(0)) will be re-
distributed tos(£). As soon as the streamline has been traced, we can distribut
the concentratiol©(sx(0)) to another parcel of same size located&f). With
this re-distribution ofC, the total amount o€ will never change. The idea has
been depicted schematically in Fig. 1 with broken lineswshg that the con-
centration of the parcel atmay be distributed a& according to a portion of the
overlapping area. Clearly, a parcel of the same sizerafy overlap at most 4
cells. The idea is to distributé(sy(¢)) into overlapping cells.

Let s¢(0) be at the centero® of the cell (i, ) and s¢(¢) be within the cell

(i—-1,j+ 1), but not at the centerSince the total concentration of the parcel
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ato is AC{}, this parcel will contribute to changing the value®fin cells , j),

(i+1]) @(j+1),and (+1j+ 1) according toACl, ACl, AsCl, ACl,
whereAj’s are portions of corresponding overlapping areas as shiowag. 1.
Each streamline will contribut@{} to at most 4 cells, covering all of the initial
concentration according to the computed overlapped area.

During the next time step, it is natural to trace the streaenthat passes
throughs(¢) using the velocity as(¢). Sinces(¢) is not a grid pointv(s(¢)) is

not known, and may be computed from the neighboring cellsraaag to
1
V(s(§)) = A (Alvi,j + AoVis1j + AgVij1 + A4Vi+1,j+1),

whereA is the area (volume) of the 2D parcel, aAd A,, Az, A, are fractional
areas as depicted in Fig.1.

This procedure traces all streamlines emerging initiatyf the center of each
computational cell. At each step, the velocity for compgiach streamline is up-
dated, assuming the velocity field has already been compuitezlconcentration
for each computational cell is updated at each time step@sa®the streamline

has been traced.

3. Comparison with a reference model and the heuristic massdnsfer theory

This section presents the benefits of the Lagrangian modbklrespect ta
commonly used equivaleméference Eulerian model. A heuristic mass transfer
methodology is studied to explain the theory of numericaksndifusion and
dispersion so that the source of error as time elapses cattebéfied theoret-
ically [31]. Although not in common practice, the heurisitic theory presd
by Warming and Hyett [31] is useful to understand the soufceri@r that de-

stroys the quality of an Eulerian model, and is also usefeigalore the benefits
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of the Lagrangian modelling approach. Further details ehtburistic method can

also be found in [40].

3.1. Two reference finite fierence schemes
Let us consider a finite ffierence discretization of a one-dimensional mass

transfer problem

oC oC
E + V& =0 (12)
as written below .
Cin+ - C:In + VCin+l - Cin—l — O (13)
At 2AX ’

whereC' = C(iAX, nAt) is an evaluation of the continuous concentration field
C(x,t) on thei-th grid point atn-th time step. This is an explicit method with a
truncation erroO(Ax2, At). In the limit of Ax — 0, At — 0, the truncation error
vanishes, and the finitefiierence Eq. (13) approaches the achatial diferen-
tial equation(PDE) (12). Since the scheme (13) is unconditionally uristabis

a common practice to use the upwind scheme:

cri-cr o Ch-Cry
IAt L +v Axl =0 forv> 0, (14)

which has a truncation erré¥(Ax, At). The scheme (14) is conditionally stable if

| VAt

| < 1, which means that i\t is restricted, the numerical error does not grow

spontaneously. However, this fundamental concept of nizadestability does not
confirm whether the scheme is still appropriate for the mhbitsics problem of
electro-osmotic mass transporta higher order version of (14) is needé&teither
the order of accuracy nor the stability condition tells usvtbis scheme would
predict a flow as time elapses; one can only see flfeeteof error accumulation
after computation of the flow for many time steps. Hereimafitee will refer

to (14) as the reference Eulerian model.
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The following heuristic theory explains the behavior of heame when numer-
ical integration time elapses. To the best of authors’ keolge, this methodology
is not widely used by the heat and mass transfer research goitymAlthough,
the following presentation has used a usual upwind schdragralysis is appli-

cable to other higher order upwind schemes.

3.2. Modified partial dfferential equation

We can expand each of the function evaluati6fis, C" ,, andC!" ; about the
point (1AX, nAt) using a Taylor series, which converts the finitgelience Eq. (13)

into the continuous form

oC oC AtV2 9%C
= 2T AXZ, At?). 1
6t+vc')x > 6x2+0(x’t) (15)

Eq. (15) is called the modified partialfterential equation (MPDEpnd MPDEs
for similar schemes can be obtained using table | from Wagraimd Hyett [31]
This is the actual equation solved by scheme (13) insteadjo{2). Neglect-
ing terms of ordeO(Ax?, At?) and higher, we see that the MPDE contains an
extra term with an fective negative massfaliision,vgrt = —V?At/2, and hence,
Eqg. (15) produces an unstable solution. Similarly, the MABDE14) takes the
form

oC  oC _ \/A_x(l_ vAt) 0°C

— — = AX2, At?, AXAL). 1
a Voax T 2 ax | o H O AL AXAY (16)

NeglectingO(Ax?, At?) terms, the leading order error in the MPDE (16) will in-
troduce an ffective positive mass ffusion if vAt/Ax < 1, and the solution
of (16) will diffuse in time. Hence, the numerical solution will diverge from
the actual solution after many time steps. Clearly, thdieel mass difusion

vart = VAX/2 (1 — vAt/Ax) would infer the rate of divergence, and one must have

17



extremely small values for bothx andAt in order to havergrt < 1. This anal-
ysis can be generalized to study tHEeets of artificial mass éusion if the mass
transport problem (12) is directly discretized (with f/AY/FE) on an Eulerian

mesh.

3.3. The heuristic analysis for computational mass transfe

It may be more appropriate to recast briefly - the heuristithime of Warming
and Hyett [31] to the computational mass transfer problentkhout going to the

details of derivations, using the general form of the mamssjport equation

ac
+L(C) = (a7)
where £(C) represents the spatial derivative terms. If all spatiaivdéves of
Eq. (17) are discretized with a collocation based F)FE method, the corre-

sponding MPDE for (17) may be written in the following geridoam

© . 10 - Z A Z lps S (18)
whereA,, or Azp,1 is a function ofAxP andor AtP. On the right hand side of (18),
the even order derivative terms will introduce artificiaffdsion of mass, and the
odd order derivative terms will introduce artificial dispen of mass. As shown
by Warming and Hyett [31], a necessary condition for the italof a finite
difference scheme is
(=1)> 20, > 0, (19)

where p. corresponds to the lowest order non-zero term in the rightilsade

of (18). For the finite diference scheme (13), we hape= 1 and (1)P11,, =
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—Atv?/2, and hence, the scheme does not satisfy the necessaryicofoli sta-
bility. Similarly, we can show that the scheme (14) doess$athe stability con-
dition (19). One observes that a discretization must be tediogo that the MPDE
does not contain any even order derivatives. Otherwisel] salaes of Ax andAt

are necessary to make,, small. This study encourages us to develop a method-
ology where the numerical scheme yields an MPDE with no eveéeralerivative

terms to at least the lowest order error term.

3.4. Spurious massjglision of the reference model

MPDE (16) asserts that the reference model (14) introdudeading order
error that can be quantified by a mesh Peclet number suchplghatVATX(l - "A—A)f .
We keep the same symbBk (for ‘Peclet’ and ‘mesh Peclet’ number) because
mesh Peclet number is used only in the present subsectiearlZltheerror may
be minimized by reducingx andAt, and a large mesReindicates a small error
To study the &ect of artificial mass diusiondue to this erroiin the reference

model using the heuristic theory, consider a simplified nhofl€L6), given by

oC 16°C
i 2
ot Peodx?’ (20)
along with the initial Gaussian distribution
exp(75)
C(x0) = ——, 21
%0 4r/Pe D)

whereC decays rapidly with respect ta Eq. (20) models thefgects of artifi-
cial mass dtusion as time elapses, and can be solved along with the bopunda
condition

C—>0 as |¥—
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such that ,
exp( 7PeD )
Var/Pe(t+ 1)

Using the scalese(g. hU) listed in Table 2, we can estimate a dimensional

C(xt) =

(22)

diffusion codicient D for a corresponding value of the mesh Peclet nuniteer
The solution (22) has been plotted in Fig. 2 for several \sahje;,%, 2x103(D =
10722 m?/s), 103 (D = 5x 101 m?/s), 5x 104 (D = 2.5x 101 m¥s), 10 (D =
5x 10 m?s), 5x 10° (D = 25 x 10> m?%s). Clearly, only a negligible
physical difusion(101°m?/s < D < 2.5x10*? m?/s)is modeled with X103 <
Pie < 5x 107°. Since the estimated value Bfis small, the interpretation of the
leading order error in (16) may be misleading. With equintlscaling, Fig. 2
exhibits notable spreading Gffor only about a factor of 32 decrease in the mesh
Peclet numbePe due to the error. This means the error identified by (16) may
have a serious impact in some cases. As explained belogvcan estimate the
computational burden needed to avoid the artificial maggsion

In a situation where the physicalffiision codicient isD = 2.5 x 10712 m?/s,
the actual Peclet number takes a valyBd= 5x 107°. In this casethe numerical
solution should agree with the narrow profile ‘—’ in Fig. 2. \Mever, if the mesh
Peclet number for the MPDHiffers from actuaPe such thatF,ie =2x10°3
due to a coarse resolutionX andAt), the numerical solutionmay converge to
the shallow profile ‘e-o-’ in Fig. 2 instead of converging to the expected narrow
profile ‘—', which is a clear divergence of the solution. Irethresent example,
the artificial mass diusion can be minimizeflom 2x 1072 to 5x 10-° by refining
the mesh uniformly at least a factor of 32 in each directasnyell as the time step
At, in order to get a mesh Peclet number such ﬁgai: 5x 10°. To do so with

the reference model, the computational complexity wouttléase by a factor of
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32,768 (about 16) for a 2D simulation, and by a factor of 048 576 (about 16)
for a 3D simulation, assuming that battx and At must be reduced. Note that
such an increase of grid points may have other numericéetsi and clearly, the
approach is not appropriate.

The theoretical study presented in this section shows tlareful investi-
gation of numerical error in a classical computational nhdagleecessary, where
the transport term is discretized directly on an Euleriasimé he proposed La-
grangian model is one way to eliminate the spurious ma$ssion, and brings
computational advantage saving the complexity by about®@faf 1¢ for the
2D electro-osmotic mass transfer problenx(20~ < & < 5x 107°). Improving
the solution of a computational model without overburdgrtime computational
work is the second of two unresolved challenges discussdaeimtroduction.
The proposed development is now validated with numericpégrents. Using
2D simulations of both the Lagrangian model and the referenodel, we have
verified in the next section that the Lagrangian model hasesded the modelling

problem that has been reported in the present section.

4. Results, verification, and validation

In all color figures presented in this section, blue and rddreaepresent the
dimensionless minimum and maximum values respectivelh®fcbrresponding
guantity, and the yellow color indicate a zero. Furtherxisaepresentg/h and y-
axis representg/h, unless otherwise indicated in the corresponding figurereh

his the length scale.
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4.1. Incompressible flow computation

The 2D Taylor-Green vortex flow is a model that is widely usedserify
numerical accuracy of incompressible flow computation, nettee velocity and

pressure satisfying the incompressible Navier-Stokeatamuare defined by

u(xy.t) = -cos(2rx)sin(2ry)exp(-8°t/Re). (23)
V(X y,t) = sin(2rX) cos(27ry)exp(—87r2t/Re), (24)
P(xyt) = —%(cos(4nx)+cos(47ry)) exp(—l&rzt/Re). (25)

Fig. 3 shows a good agreement between the simulated veluityhe exact ve-
locity (23). This model has produced equivalent resultbwérious values ohx,

Ay, andAt. These tests confirm the accuracy of the velocity solver.

4.2. Numerical Simulation of Electro-Osmotic Flow

To simulate an electro-osmotic flow, necessary dimensipasmeters and
scales are listed in Table 1 and Table 2 respectively. Thalinbncentration field,
C(x, 0), having a non-zero value identified with the red color svghin Fig. 40).
The values of dimensionless parameters for the present seholations are

Rie =20, 5x10°< Pie <2x1073, a=1.27x10°, «*=428Q andn = 0.28,

where an increase Rereflects a decrease in the dimensionéldiion codicient
D. For & = 5x107%, we haveD = 2.5x107?m?/s. With such a small value @,
the dfect of difusion is negligible. Therefore, an initial scalar pldgx, 0) that
is transported in a microchannel with an electro-osmotw f®not expected to
spread or difuse significantlyi.e. mass transport is dominant over magugion.

Furthermore, Eq. (5) also states tljfglcz(x, t)dV is conserved for an arbitrary
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control volumeV with no solid boundaries iD = 0. In applicationsp # 0, and
a flow is often confined within solid boundaries. Hence, aneusiénding of the
transport ofC with respect to increasiyidecreasing?e explains how accurately
the numerical model has simulated the actual mass transfblgm.

To test if the present model simulates the flow in a microck&sea that the
mass transfer remains dominant over mag&isiion, a number of numerical ex-
periments have been performed using both the proposedngigramodel and a
reference Eulerian model. Some representative and equaivsgts of datum from
both model have been presented in Fig. 4. Clearly, the Lageganmodel resolves
the dfect of increasing®e more accurately compared to the Eulerian model be-
cause the spatial spreading of the initta(e.g. Fig. 4(0)) decreases with respect

to increasingPe

4.3. A quantitative assessment and theoretical justihcefor the proposed model

For the first set of numerical experiments, we have presentéd. 4(@-€) the
time evolution of the initiaC using the Lagrangian model f@g =2x1073,1073,
5x 104, 104, and 5x 10°° att = 4.4, when the sample has been transported to
about the middle of the channel. Note that thi@udiion is strong fm,gle =2x1073,
but weak forpie = 5x 10°. As expected, the increase BE has reduced the
diffusion of the concentration field.

In the second set of experiments, we have repeated theskgonsa using the
Eulerian model, and the results are presented in Fit:jf(where the fect of
increasingPeis clearly not resolved. The Eulerian model has failed tousate
the transport dominated flow.

First, the failure of the Eulerian model is explained frora theory presented

by (16), wherevgrt is constant for fixed\x and At. Although Pe has been in-
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creased, artificial massftlision remains dominant over mass transfer phenom-
ena. Second, the Lagrangian simulation of mass transfeilysdonsistent with
theoretical analysipresented in section 3.3 and in Warming and Hyett [31]. Care
must be taken while interpreting these Lagrangian simuiatbecause the heuris-
tic theory, when applied to an equivalent Eulerian modely oxdicate that artifi-
cial diffusion is not dominant over physicalfiision in the present Lagrangian
simulation. Under similar computational and physical emstances, the La-
grangian model resolves the physics, when tlfieision codficient varies between
O(107* m?#/s) andO(10-*2 m?/s). The ability of resolving variation in such a small
diffusion codicient is one important aspect of the present Lagrangian mode
From the distributions o€ presented in Figs 4fe), we have computed the
profiles of C along the liney = 0.5, and have presented the result in Figa)5(
For the ease of comparison, the initial prof@é€x, 0.5, 0) from data in Fig. 4g)
has been translated and presented in Fig). 3tlearly, the width of the Gaussian
mass distribution increasesRe decreases, which is in good agreement with the-
oretical model of mass flusion. In addition, the height of the Gaussian profile
is proportional to\/F,Ie (e.g, Eg. (21)). The maximum values for each distribu-
tion of C from Fig. 4@-j) have been compared with the theoretical heigj@
in Fig. 5(b). The Lagrangian model appears to fit well with the theoattie-
sult, which shows a large deviation from Eulerian model. SEheesults present a
guantitative assessment for the proposed model’s abditggolve mass transfer
phenomena, and bring potential improvements to the fieldwofputational mass

transfer modelling.
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4.4. Quality of solution as time elapses

Let us now study the performance of the Lagrangian modelfédrdint time
intervals, where streamlines are computed by solving tlsteay of ODESs (7)
numerically, using a forward in time method. It is importaatunderstand if
truncation errors accumulate, the global solution will fiected as integration
time elapses. This is examined by simulating electro-oentansport at three
different time intervals, and by comparing simulations usirglthgrangian and
the Eulerian models. In Figs 6 (a)—(c), simulatc, y, t) profiles using the La-
grangian model a@t= 2.2,t = 4.4, andt = 6.6 have been presented, where we see
that the concentration field has roughly the same width as timoreases. Since
Pie = 5x 107°°, the ditusion is negligible, and we do not expect to see widen-
ing of the initial sample as it is transported along the clehniThe Lagrangian
model’s result does not indicate any accumulateéfidive behavior at these three
time intervals. However, plots (X, y,t) in Figs 6 (d)—(f) exhibit a noticeable
widening in the concentration profile with increasing tiri@éese plots have been
produced using the Eulerian model, where the accumulafi@nror as time in-
creases is clearly visible. Note that both the LagrangiahEanerian models have
equivalent order of accuracy. These results indicate fiedt agrangian model has
controlled the error at various time intervals as soon asdmeple is transported
along the channel, which is not the case with the Eulerianghdthis means that
the numerical treatment of advection along the streamlahedto avoid the error

accumulation compared to a direct discretization of adeaderms.

4.5. Comparison between electro-osmotic and hydrodynaamsport

Patankar and Hu [8] explained that an electro-osmotic pogjs optimized

when a rectangular sample plug is used, the distribution ofC(x,t) needs
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to be approximately rectangular as in Fig. 7(a). Pressuadignt forces may
lead to a parabolic distribution of the transported sammplan experiment. The
present model can be used to study the optimal pressureegtatiat needs to
be maintained during an experiment. Here, we have studiedl&velopment
of the parabolic shape when the sample is transported withbowed electro-
osmotic and hydrodynamic forcing. Fig. 7 displays the cotregion fields at
t = 4.4 with varying values of the applied pressigat the input. APy is in-

creased, the parabolic nature of the concentration fielesiwik characteristic of
a pressure-driven Poiseuille flow, becomes more domindms. &xperiment con-
firms that the proposed Lagrangian model simulates bothytdeodynamic and
the electro-osmotic transport without introducing art#ficdamping. Moreover,
the Lagrangian model has the potential to analyze the flowt@aaieétermine the
order of magnitude of the pressure d@priori to a typical experiment if other

equivalent parameters are known.

5. Conclusion, contribution, and future direction

In this research, we have developed a Lagrangian methogldognodelling
electro-kinetic mass transport in microchannels, whepecé} length scales of
the flow are on the order of microns. Our methodology proptsesodel the
time evolution of mass transport phenomena using a streamotiordinate, where
streamlines are computed numerically from a given velofighd. In this ap-
proach, a two- or three-dimensional advection equatiomiwverted into a one-
dimensional equation in the streamline coordinates, whicdolve analytically.
Since streamlines are attached to the dynamics of a flowhéhis to resolve the

flow more accurately as well as saves computational tldseng a fractional time
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stepping algorithm, theféect of difusion is modelled with anultilevel method
employing asecond order trapezoidal or Crank-Nicolson schéiileen the mesh
is refined for resolving the Debye layer and other interfastiaictures, the mul-
tilevel solver helps to preserve a linear relatioship benwthe number of grid
points and the computing time. To transfer data betweemrsiisres and grid
points, an optimal interpolation scheme is studied withoatating the desired
accuracy. We have studied how the heuristic theory of Wagraimd Hyett [31]
can potentially be used to identify source of errors destigpyhe physical char-
acteristics of a simulated flonComparisons witla computationally equivalent
Eulerian modehs well as with theoretical estimateave revealed that the La-
grangian model simulates the flow mof&aently.

There are several potential extensions of this work to bsidened. First, the
approach can be extended to simulate a 3D electro-kinetss tnansfer problem
in a complex geometry. For this purpose, the present dewetaphas been imple-
mented in the primitive variables — velocity and pressuree present multigrid
routine must be extended and verified for a 3D flow. Secondiribéel can be
extended to take advantage of multi-core clusters, imphtimg and extending
the present code with Message Passing Interface (MPIyigsaThird, Figs 4
and 7 indicate that the spatial mesh may only be refined paalthe region,
whereC has a sharp gradient. Thus, a suitable adaptive mesh reiméAMR)
approach may improve the present Lagrangian model. To tsiedb@ur knowl-
edge, a combined application of Lagrangian approach and Alsl&not been
studied extensively despite a few potential attempts. Surckxtension of this
work requires the development of advanced data structswes, as a binary tree,

and the implementation of polynomials with compact supporthat discretiza-
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tion of governing PDEs can be implemented in such a way tkastadvantage of

the ease of finite dierence techniques. These extensions are currently inggegr
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Kinematic viscosity of bffer solution
Electrophoretic mobility

Boltzmann constant

Elementary charge

Temperature

Permittivity of bufer solution

Buffer ion density

Avogadro’s number

Debye layer thickness

4 o K =

=]

10% m%s

1.4x 108 m?/(V s)
1.381x 102 JK
1.602x 10°°C
300K

6.95x 1071° C?/N m?
3.18x 10~* mol/m®
6.022x 10?2 mol?
765 nm

Table 1: Dimensional parameters for modelling electreelimmass transfer in a microchannel.

These parameters have been used in Section 4.
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Channel length H 4x10%m
Channel width h 5x10°m
Velocity scale U 103 nys
Time scale h/U 0.05s
Pressure scale pU? 103 Pa
Applied pressure at the inputPy 48 x pU?
Pressure at the output P1 1x pU?
Wall potential scale I 107 mV
External potential scale 1) 1vVv
Applied voltage at the input @ 4% ¢
Applied voltage at the output oV
Computational resolution  n,xn, 1025x 129

Table 2: Necessary scales and resolution used in the nuahgiritulation of electro-osmotic flow

presented in Section 4.
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Figure 1: Initially, a fluid parcel occupies a computatiocell, and cells are shown with a solid
line as the boundary, where the center of a cell is marked.bfach cell centes(i, j) is the
streamline positiors(t"). Solid curves are streamlines that passes thrayghkhich have been
traced by solving (7). For a particular cell, the positafti*) on the streamline has been marked
by e, where the associated fluid parcel is shown with a broken(tne ). Clearly, this parcel

occupies 4 neighbouring cells.
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~e-2x107°

Figure 2: Artificial mass diusionis examined with a simple ‘toy’ model, where exact solutien i
known The solutionC(x, T), at some fixed tim&, = T for varying values of inverse mesh Peclet
number,Z: 2x 1073, 103, 5% 104, 104, 5% 10°°. As 2 decreases, the concentration profiles
become steeper. Clearly, a smaller valu®etorrespond to more spreading offdsion of mass.
This shows that the order of magnitude for the local trurmcedirror may vary by a factor of 30 to

40, but this small error has a remarkabfi=et on the finite time massf#iision.
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Figure 3: The solutionu(x, y, t) of the Taylor-Green flow: & numerical solution after 100 time
steps, b) exact solution at the equivalent tinte;The numerical solution exhibits a good agreement
with the exact solution, verifying the accuracy of the codilee domain has lengtk/h = 1 and
widthy/h = 1.
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(o) Initial C(x,y, 0)

Lagrangian Eulerian
(a) &=2x10" (f)Z=2x1073
(b)Piezlxl(r3 (g)Pie:1><1(T3
(€) 5 =5x10" (h) & =5x10"*
(d) & =1x10" (i) & =1x10"
(e)F,ie:5><1(T5 (j)F,ie:5><1(T5

Figure 4: The &ect of Peon the concentratio@(x, y, t) att = 4.4 in a channel of lengtlx/h = 8
and widthy/h = 1. (o) Initial concentration fieldC(x,y, 0). SimulatedC(x,y, 4.4) for various
Pie are shown in subsequent images:ef Lagrangian andf(-j) Eulerian upwind. The values of
2 are chosen as follows.a(f) 2 x 1073, (b,g) 1 x 1073, (c,h) 5 x 1074, (d,i) 1 x 10, and
(e j) 5x 10°°. Clearly, we see that the Lagrangian method has resolveeffiet of difusion

codficient. The Eulerian method is plagued with artificial nuroakrdiffusion.
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Figure 5: @) Profiles ofC(x,0.5,4.4) for 2 = 2x 1073, 5x 10, 5x 1075, and the initial,
C(x,0.5,0), which has been translated for comparison purposes. pactad, distribution o€
widens and its maximum value decrease®d&increases. ) Corresponding to the results in
Fig. 4, the maximum values & for increasing®eare shown. Comparison of the results from the
present model and the reference model shows that the preseiitagrees well with the theoretical

prediction.
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Figure 6: Concentration profiles f(ﬁ; =5x10°%at (ay(d)t = 2.2, (by(e)t = 4.4, and (c)(f)
t = 6.6 in a channel of lengtly/h = 8 and widthy/h = 1. Figures (a), (b), and (c) were calculated
using a Lagrangian approach for the advection term, while g (d), (e), and (f) were calculated

using an upwind scheme for the advection term.

0.5

(©)

Figure 7: Combinedféects of electro-osmotic and hydro-dynamic transport. €atration fields
are simulated with the Lagrangian model f&r= 5 x 1075 with increasing pressure values at the
input: (a)Po = 0.048 Pa, (b)Po = 0.24 Pa, and (cPy = 0.48 Pa. The rectangular sample plug

takes a parabolic shape if the input pressure increases.
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