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ABSTRACT
Atmospheric motions are generally characterized by a wahge of multiple length and time
scales, and a numerical method must use a fine grid to ressdheaswide range of scales. Further,
a very fine grid requires an extremely small time step in otdeteep explicit time integration
schemes stable. Therefore, high resolution meteorolbgjivalations are very expensive.

A novel multiscale modelling approach is, therefore, pnése for simulating atmospheric
flows. In this approach, a prognostic variable represergihghly intermittent multiscale feature
is decomposed into a significant and a nonsignificant pangusavelets, where the significant part
is represented by a small fraction of the wavelet modes. Toyggsed multiscale methodology has
been verified for simulating three cases: Smolarkiewice®dnational flow model; warm ther-
mals in a dry atmosphere; and the dynamics of a vortex palr antbient stable stratification.
Comparisons with benchmark simulations and with a refexencdel are evidence for the conver-
gence and stability of the proposed model. The comparistinthve reference model has revealed
that abou®3% of the grid points are not necessary to resolve the signification in a warm ther-
mal simulation, saving aboydt% of the CPU time. Moreover, the CPU time varies linearly with
the number of significant wavelet modes, showing that thegarefully implicit adaptive model
is asymptotically optimal for this simulation. These primaesults point toward the benefit of

constructing multiscale atmospheric models using the tadawavelet methodology.

1. Introduction

A gquantitative understanding of the atmosphere requireacanrate representation of vari-
ous multiscale meteorological processes such as coldsfrosing thermals, moist convection,
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breaking of gravity waves, and turbulence, which has lorenkee challenge for numerical atmo-
spheric modelsg.g.see Carpenter et al. 1990). Recently, the atmospheric tmagebmmu-
nity is exploring several approaches to address the sc@édegaveen the large scale physics -
that can be resolved explicitly from first principles - ané gmaller scale processes - that need
to be parameterized. These approaches include the use esiveiggarallel high-performance
computing (HPC) methods, adaptive mesh refinement (AMR)riewies, semi-Lagrangian ad-
vection schemes, Lagrangian stochastic models, and Laidg Gimulation (LES) methods to
name a few (e.g. Moeng 1984; Skamarock et al. 1989; WilsorSawdord 1995; Behrens 1996;
Rosenberg et al. 2006; Wehner et al. 2008). As a result, s@utton of current state-of-the-art
operational weather prediction and climate models hadgf&gntly increased thanks to the lat-
est HPC resources (e.g. ch. 9, Hamilton and Ohfuchi 2008)weder, owing to the enormous
range of length- and time-scales, one rarely has the luxtinsing HPC resources to explicitly
resolve many important phenomena, for example, the melgosiceulation that organizes moist
convection. Therefore, much effort has also been paid canpeterizing the effects of un-resolved
physics. The research in two methodologies - the increagkeo$patial resolution with more
powerful HPC algorithms and the search for the best paramat®n method - has been a current
goal of the atmospheric modelling research community (Be$1998, 2006; Jablonowski et al.
2006; Bacon et al. 2007). The present paper aims to explavgel multiscale technique for high-
resolution atmospheric modelling, which uses an optimailner of adaptive grid points to capture
isolated multiscale features.

Indeed, there are several common techniques in this diredticluding nested grids, stretched
grids, and AMR methods. Recently, there are growing intsriesthe AMR approach for simulat-

ing isolated multiscale features in the atmosphere. Skarkaet al. (1989) presented an adaptive
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atmospheric model using the AMR method of Berger and Col@@89), where a Richardson
method was used fa posterioriestimation of truncation error. Tomlin et al. (1997) stutiew

an adaptive grid chemical transport model can reveal netufesof plume concentration profiles.
Blayo and Debreu (1999) verified that this approach gainsiht @me by about a factor df

in the context of simulating a barotropic modon. Behren®8 %®roposed a dynamically adap-
tive shallow water model in the Cartesian x-y plane. Bacaad.R000) and Boybeyi et al. (2001)
presented a non-hydrostatic model, OMEGA, using unstradturiangulated grids that can be dy-
namically or statically adapted to localized features téiest. OMEGA has further been verified
for multiscale simulation of hurricanes (e.g. Bacon et 802). Jablonowski et al. (2006) verified
that a spherical 2D AMR model detects the chosen featuredbhgland helps preserve the shape
and amplitude of the transported field while saving companal efforts. Lauter et al. (2007)
presented a barotropic AMR model of the atmosphere. Bel{28®6) discussed a more technical
details on the AMR approach and parameterization in theesdiof an AMR model. For a review
on the development of classical AMR models for global atrhesic chemistry/transport or op-
erational cyclone forecasting, see the work of Nikiforaf@805) and Bacon et al. (2003). Most
classical AMR algorithms are designed to reduce local srestimated according to a Richardson
criterion, where a coarse grid solution is compared with@ d@nd solution.

In contrast, a principal objective of the present study aimexplore a novel multiscale ap-
proach - the adaptive wavelet collocation methodology (AWC that represents the most energy
containing, intermittent motion using a small fraction bétwavelet modes, where the residual
motion corresponds to a large proportion of them. Hence AWEM tracks the multiscale en-
ergy contributions associated with intermittent featutascontrast to the classical AMR method,

where an adaptive grid aims to capture localized featuraglofv, the AWCM represents localized
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features in terms of multiscale wavelet modes, where a flafec®mposed into a significantg
energy containing) and a nonsignificané(residual) part. The significant part is calculated on an
adaptive grid that is generated naturally due to discarthieghonsignificant part. In other words,
the nonsignificant part represents numerical error if tgeificant part contains all wavelet modes,
resolving a certain desired dynamics.

Despite the AWCM has advantages over the classical AMR agprahere are some chanl-
lenges that needs to be addressed for extending the AWCMrtosgheric applications. First, a
locally refined mesh of the AWCM will also constrain the tintepsglobally for an explicit scheme
satisfying the CFL criterion. To address this disadvantddgam et al. (2006) proposed to solve
the governing equations in the simultaneous space-timeatoas if the time is a space-like vari-
able. Clearly, this approach is not practical for atmosjatfeows. The present work has proposed
to use an implicit scheme for the advection terms as well astfter terms. However, solving a
large nonlinear system at each time step requires the catisin of the Jacobian matrixy, of
the discretized nonlinear system, which will also be mii#gbwith the error vectow, and hence
the computational overhead would grow likEAN?), where\ is the number of grid points. To
address this overhead, the use of a multi-level solver has perposed. Secondly, the AWCM
provides an adaptive methodology only, which does not elat@ the need of sub-grid scale pa-
rameterization. As discussed.g, in ch§9.2, Behrens (2006), the parameterization techniques
must also be re-designed in order to take full benefits of idamethodologies. The present
study has addressed the first of the above two.

In §2, the proposed multiscale modelling approach is presefitked convergence of the pro-
posed model is verified i3. Numerical simulations of warm thermals and that of voiei

dynamics are presented 4 andg5 respectively. The model is applied to simulate a flow over
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an isolated topography 6. Finally, the proposed development has been summarizg&tiwith

brief discussions and further research in this direction.

2. A wavelet based atmospheric model
a. Background

Over the pask5 years, wavelet theory generated a tremendous amount céstéan many ar-
eas of research, ranging from Applied mathematics (e.gs$bnann and Morlet 1984; Urban 2002;
Cohen 2003) to ocean modelling (e.g. Jameson and Miyamg 20b8 introduction of the second-
generation wavelet theory by Sweldens (1995) acceleraiede development of sophisticated
computational fluid dynamics (CFD) techniques for simulgtcomplex geometry flows (Kevla-
han and Vasilyev 2005). Depending on specific applicatimaselet methods can use a Galerkin
approach, where an average residual error is minimizeckietire domain, or can use a colloca-
tion approach, where the residual error vanishes on a setllotation points. A comprehensive
review on recent developments of wavelet methods for CFDiGgijmns can be found in Schnei-
der and Vasilyev (2010), where both the Gelarkin and theocation based methods are also
reviewed. The present development has been originatedtfierasecond-generation AWCM for
time dependent (e.g. Vasilyev and Bowman 2000) and ell{gtig. Vasilyev and Kevlahan 2005)
problems, and is an extension of the wavelet methodologgieti by Alam (2006), to the field
of atmospheric modelling. This AWCM uses a near optimal degrof freedom to simulate, for
example, homogeneous isotropic turbulent flows with appatg sub-grid scale (SGS) parame-

terization (e.g. De Stefano and Vasilyev 2010). To adaptsyfaial and temporal step sizes to



the locally varying solution of a turbulent flow, Alam (200@oposed a simultaneous space-time
AWCM for solving nonlinear partial differential equatio(RDES) (e.g. Alam et al. 2006). Kevla-
han et al. (2007) compared the solution of the vorticity ¢iqguabetween the space-time AWCM
and a Fourier collocation method, and found that only at38atof the space-time modes are
sufficient to compute a flow with high temporal intermittendyehra and Kevlahan (2008) used
spherical wavelets to extend the AWCM for solving PDEs onsthigere.

In summary, the AWCM¢€.g. Vasilyev and Bowman 2000; Alam 2088)wvell as other wavelet
based methodsée, Schneider and Vasilyev 20p@)vide an efficient framework for solving PDEs
or simulating fluid flows, where the solution has importanafirecale features only on a fraction
of the domain. In the following section, the AWCM that is usedhe present work is described

briefly.

b. The adaptive wavelet collocation methodology (AWCM)

For a brief introduction of the AWCM, let us consider a muéke decomposition of any prog-

nostic variable

' ' oo 29-1
u(w) — Z c_]i:mingp.lz;nin(w) + Z Z Z d/.]:,l ;:’l (w)7 (1)
ke Imin {=jmin H=1 kelCHL

where/C/=» andKC*! are sets representing values of the inéej™" | d'] is a set of coefficients
for the wavelet basiﬁpi’“i“, ,ﬁf’l], Jmin, [, p are integer numberd,stands for dimension, aned =
(z,y, z). Since this is a fixed time representatiois omitted for simplicity. For the present work,

we haved = 2 andx = (z, z). The decomposition (1) has a significant part

j—1 241
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at levelj, which is given by\ wavelets such that"'| > ¢ ||u||,, and a nonsignificant or residual
part that is defined by

j
Yinc

(@) = u(x) — ul(z),

wheree is a tolerance that dictates the maximum wavelet |g\ahd the symbo]|u||, represents

a certain measure.g. r.m.s. value, ofu. Note, the coefficientd;" are scaled with a threshold
e||ul,- In fact, the significant pant/ is a nonlinear approximation te, which does not oscillate

at a frequency larger thar (e.g. Cohen et al. 2001). The maximum efjjefx) — v/ (x)||, for a

piece-wise smooth functiom(x) can be estimated as
lud (@)l = O %), N = O, 3)

if wavelets withn vanishing moments are used (Donoho 1992; Vasilyev and Kanl2005; Alam
2006). Clearly, a sufficiently smadlimplies a largeN and the residual part can be treated as a
numerical error if\/ is sufficiently large. For all simulations in this paper, wavl usedh =

6. A rigorous mathematical analysis of wavelet theory, whghot the subject of this article,
can be found in standard text books (e.g. Mallat 1999; Col)82  Primary questions for
extending the AWCM to atmospheric modelling include thehodtof (i) calculating coefficients
[c,i"““,dﬁ’l] (§2.c.1), (iz) approximating spatial derivative§2.c.2), and(iii) time evolution for
prognostic variables.g). The following development uses the lifting schemg.(8weldens

1995) and interpolating wavelets (e.g. Donoho 1992; Vasignd Bowman 2000).



c. Calculation of wavelet coefficients and numerical déferation
1) CALCULATION OF WAVELET COEFFICIENTS

Let ¢/ represent a given(z) on thek-th grid pointz, at levelj; i.e. ¢, = u(x],). First, the
data sefc, } is grouped into two{c},, } with those having an even index afid,, . , } with those
having an odd index.e. {c,} = {c},,} U {c},.,,}. Forexample{c,} = {c}.c],c},c}, ¢}, cl},
{c} = {c, . e}, and{c,. ..} = {c],c}, cl}. Denotingj-th level as high-resolution, a low-
resolution data is defined by, '} = {c},,}. Secondly, the missing details between high- and
low-resolution informationi(e. betweerb,i andci,_l) are predicted using polynomials.

Consider polynomial®;, of degree: based on ea&ti,_1 and itsn neighbours, predict the value
Chra DY PR (), and definet], ' = 1(c),, ., — Pi(cl ). The symbolPy(cj, ') means that a
polynomial is based oa?[j1 and itsn neighbours, and is evaluated on the corresponding grid.poin
Thirdly, low-resolution data/, ’s are updated b}’ (d}; '), which ensures that the corresponding
wavelets will have a zero mean (Sweldens 1995). This complettwo-scale decomposition of
[cl] = [c,", d,~"] (the " is dropped from¥ for simplicity), and is known as the second-generation
interpolating wavelet transform.

A forward wavelet transform can be described as

=+ PR
d?g_l = %[C%Hl - Pg(cék)]
and a multiscale decompositic@&i"‘“‘,dﬁ, Jmin < I < j — 1 is obtained by applying the above

wavelet transform recursively. The original data can bevered by the following inverse wavelet



transform

= =P
(5)

Cékz-‘,—l =247 + Py (ch,)

at any level;.
A two-level decomposition ofin(27x) is presented in Fig.(k), showing thatin(27z) is well
approximated locally if the grid point at = 0.5 is discarded, Wherﬁiﬂ is small. Further, large

errors occur neat = 0.2 andx = 0.8, which can be minimized by adding new grid points.

2) APPROXIMATION OF DERIVATIVES

A spatial derivative is calculated using a collocation noetthat is based on the multiscale de-
composition of the derivative, and is computed from coedfits of eq. (1) by differentiating poly-
nomials analytically (e.g. see Alam 2006). L&be a differential operatod = [¢}™™, d], jumin <
[ < j represent the coefficients in (1), aredrepresent the function evaluation on the corre-
sponding grid. Then, a weighted residual collocation methoplies that the residuak :=
Lu(x]) — Lul(z]) vanishesj.e. Lu(x]) = Lul(x]), at each grid poini]. For example, know-
ing the functional form of the wavelet basi§y’(z) can be obtained by differentiating eq. (2).
Then, following Alam (2006), we hav,éu(xi) = DW~'d, whereD is the resulting differentiation
matrix,d = We, andW is the wavelet transform matrix;e. the lifting scheme operations as
described above. Firsd,is obtained by taking the forward wavelet transform (4) ofheege, and
then the inverse wavelet transform (5) dfat each level recursively results into a polynomial
representation ofi/, which is differentiated to find derivatives. The compuiatl cost of this
approach is approximately equal to that of calculating tlagelet coefficients, where neithBr
nor W—! is explicitly formed, thanks to the lifting scheme. It cas@be shown that the maxi-
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mum error of calculating-th order derivative ofi(z) is O(e!~%/™), wheren is the order of the

polynomial (e.g. Vasilyev and Kevlahan 2005; Alam 2006).

d. Grid adaptation methodology

For the present work, the decomposition (1) is associatéd avmulti-level grid, where there
is a one-to-one correspondence between the grid points anelets. An example of a uniform
three-level grid is shown in Fig. 1(b), where a géidlat level;j is composed of a coarser gigd—!
and a complementary gri’~* such thatg’ = G~ U D’~! (or D'~ := G/\G’~!). In other
words, we have

g] — gjmin U Djmin U D]mln"l‘l ..... U D]_%UD]_:l’

Vv
gi=1

whereG/=i» denotes an arbitrary coarsest level grid, containing< n, points such that, =
27='m, andn, = 2~'m,. For the two-dimensional example grid shown in Fig. 1(b), veee

J = jmin + 2 @andm, = m, = 3. There are two advantages with the nonlinear approximgapn
First, the numerical error associated with the approxioma(?) isO(e). Therefore, one has the
flexibility and guarantee of prescribiragpriori error tolerance. Secondly, a fraction of the grid
points at level; is used for calculating’ and reducing by a factor of2 does not imply doubling
the number\/ of grid points (e.g. eq. (3)). A more detailed theoreticakdission of this nonlinear
approximation is given by DeVore (1998). Moreover, for acgiwise smooth function(z), the
given tolerance: determines the maximum levelor the minimum scal@=’/. Therefore, the
wavelet methodology provides a natural framework for gddgtation, where an arbitrary coarsest
level gridG/=i» is extended by adding fractions of complementary gridsahaassociated with the

nonlinear approximation based on the given toleranc&he grid adaption methodology is now
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outlined assuming that the solutians exactly known. Lej = j.i,.

i. The significant solution and the associated adaptive géidare formed by discarding alll

nonsignificant points for whichi,”’| < ¢||u]|,.

ii. The refinemenof G/ follows by constructing amdjacent zoné’ that contains only those
points from the complementary gri¥, which belong to a set of nearest neighbours of only

significantpoints fromg? .

iii. The adapted gri@;’*' = G/ U D7 is formed by tuning the adjacent zo® so that wavelet
transforms and their inverse are reproducible. This is kmasperfect reconstructiopro-

cess.

iv. If ||u!

mc||p > ¢, then steps 1 to 3 are repeated with- j + 1. OtherwiseG/™! is taken to

be the final adapted grid.

The above procedure results into an adaptive gfidhat contains only\" points. It has been
verified that this\ is much smaller than the total number of grid points= 27¢ on the uniformly
refined gridg’ at scale2= for functions with highly localized features such as theoeél or the
vorticity field (Vasilyev and Kevlahan 2005; Alam et al. 2006

A principal objective of this study aims to develop a muliilecmethodology for atmospheric
modelling. The set of governing equations that form the dyigal core of the proposed model is

now presented.
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e. Governing equations — general form

At the heart of an atmospheric model, a set of conservatimtiptes forms a coupled set of
partial differential equations (PDESs) that must be sohatutaneously. A system of prognostic

equations describing an atmospheric motion can be conypautten as

ow
E—FU'V‘I’—R, (6)

wherew is a two- or three-dimensional velocity vectdr,is a vector ofd state variables includ-
ing u, andR is a vector that represents all forces, feedbacks, sinkksaarces€.g. sub-grid
scale or pressure gradient terms). Typically, the compisnain? are density, velocity, potential
temperature, and/or trace gas concentration (e.g. see Pielke 2002).

The actual components @ andR depends on the specific application. The system (6) forms
the dynamical core of the model, which is currently beinge@slong with Boussinesq approx-
imation \%%‘\ < n for the purpose of comparison with similar models, wheenotes density
and0 < n < 1is asmall numberg.g. Defant 1951; Martin and Pielke 1983; Alam and Lin 2008)

For example, Alam (2010) verified the present model for a 3Dlweeze circulation system. The

present paper examines the computational benefits of thedaf@ment using 2D simulations.

f. Boundary conditions

The model is designed for implementing three types of playfioundary conditions - a peri-
odic conditione.g. W (x + L - n) = ¥(x), a Dirichlet conditionge.g. W (L) = ¥, or a Neumann
condition,e.g. ¥'(x) - n = 0, whereL = (L,, L.), * = (z, z), andn denotes the outward unit

normal corresponding to the boundary. A non-reflecting loay condition is used to eliminate
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non-physical waves reflected from a solid boundary (e.gel2008).

g. The numerical scheme

1) TIME INTEGRATION

First, the system (6) along with Boussinesq approximasatigcretized using a Crank-Nicolson

scheme,

2\I,n+1 I DAL
n . lIln+1 o Rn+1 —
A tuV Al

—u" - VI"+R", V-u""=0, (7)
which is second order accurate in time, unconditionallplstdor a linear equation, and there
is no numerical dissipative erroe.g.Ch.4 of Tannehill et al. 1997). Note that the fully implicit
treatment of advection is a distinct feature of the presenebpment. For simplicity, we write (7)
using a compact notatioffu = f.

Secondly, pressure gradient forc€$>" ! in (6) have been treated implicitly in (7) so that the

time evolution of the velocity satisfies the divergence freaditionV - ™! = 0, such that

1
V- (yn-l—l + Atvpn-l—i)’

VZ Pn+1 —
At

wherew* is the solution of (6) for whictW - u* # 0. The Crank-Nicholson time integration (7),
e.g. for advection, requires solving a nonlinear systém = f (eq. (7)) at each time step+ 1.
A multi-level solver is proposed in this paper, wheta,’ = f/ denotes a discretization of eq. (7)

at levelj. The pressure equation is solved with a multigrid solver.
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2) THE FAS-JFNKMETHODOLOGY

For the dynamical core of the present model, benefits of thahian-free Newton-Krylov (JFNK)
method (e.g., Knoll and Keyes 2004) are combined with thaheffull approximation scheme
(FAS) (chapter 8.3, Wesseling 2004) so that fastest waeesitrer eliminated or damped with a
fully implicit method (e.g. Reisner et al. 2000; Bernsenle2@10) hereinafter calledFAS-JFNK).
Theoretical details of both JFNK and FAS can be seen in ci#éetencese.g.Knoll and Keyes
(2004); Wesseling (2004a0d the refs therep and the computational power of these algorithms
are well established such as in CFD. Neither these two appesagot a combined usage in CFD,
nor their benefits are well established in atmospheric niiodelThe FAS-JFNK methodology is
now presented briefly.

Let u* be an approximate solution of (7). The present JFNK methbasdhe linear model
Jks = f — Lu* of (7) using a Krylov method withv, iterations,e.g. GMRES (e.g. Saad and
Schultz 1986), and completes a Newton stefp! = u” + s, until a stopping condition is sat-
isfied. Instead of calculating the Jacobian mafik explicitly, the matrix-vector producf’*s is
approximatedvia a Fréchet derivative (e.g. eq.(2), Reisner et al. 2000thénpresent context,
JFNK is used as a relaxation method at intermediate levef&\&fiterations, where the iteration
is stopped either the conditidhf — Luft1||, < 7||f — Lu*||; is satisfied o, steps of Newton
iterations are completed, whichever occurs the first. Irpadsented experiments, Krylov steps
vy =2to5, vy = 0.5 and Newton stepg, = 2 or 3 are used during a relaxation sweep. Note that
not pre-conditioning matrix is constructed, which is a gigant difference the way acutal JFNK
method would be used.

Denoting the JFNK method symbolically lFNK (£7u, f7), let us now present the FAS-
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JFNK solver below. In the following algorithm, the symiiBF« means the truncation of the
multiscale decomposition (1) af at level;j. Following Wesseling (2004), the FAS equations are

defined byl 1w/ =t = L0 RI N + RITHfI — £7(w?)] at all levels< j, andLiw/ = f7 is used

~
St

at levely.
i. beginFAS-JFNK (L7w?, f7) at levelj
ii. if j = jumm then callJFNK (L7u?, f7)
iii. else callFAS-JFNK (£~ tu/~1) fi=1) onthe coarser levgl-1, wheref/—! = LI71RI~1y/ +
RIS = L ()]
iv. endFAS-JFNK(---)if t ol er ance is satisfied.

Numerical experiments have verified td&A\") complexity - a linear increase of the CPU
time with an increase of the number of grid poitis - of the proposed multiscale modelling
approach that uses the AWCM and FAS-JFNK. Note that the uael6NK type Krylov method
in smoothing sweeps is a distinct feature of this develogroempared to classical FAS method.
In all numerical experiments, the present FAS solver hateised any anisotropic coarsening or
refinement to accelerate convergence, which is one impathrantage of using Krylov method

instead of Jacobi iteration. Let us now present numericallte verifying the proposed model.
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3. Model verification
a. Analytical verification

For an analytical verification, the right hand side of (6) éfided byR(¥) = vV?W¥. Then,

the Crank-Nicolson method solves the nonlinear system

_VVQ‘I,n-i-l + un-i—l X V‘I’n+l + é‘]:,n-i-l — f

at each time step + 1, where f is the information from time step. This is an ideal toy model
for numerical verification because the dynamical core ofpfeposed model uses a FAS-JFNK
algorithm to solve the above system at each time step. Toiexetime convergence, we define a
Reynolds numbetRe = UL, wherelU/ = 1ms™!, L = 1km, and a CFL number.Zi=2" 'where
Ax is the finest resolution. The convergence was examinetfer Re < 10° and1 < CFL < 7,

as well as for varying.

For this toy modelf is defined exactly by substituting into the above equatiovangb”+! =
[un Tt o7 that represents a Lamb-Oseen vortexg( see ch.13.1, Saffman 199@)h a max-
imum velocity 1.6 ms~! near the centre of the domain that exteril&m in each directions.
Results in Fig. 2 corresponds itz ~ 10° and CFL~ 6.6. The numerical solution™*?, the exact
solutionugl!, and the corresponding adapted grid is presented in Figh2revFig. 2c) shows
that the grid is refined locally, and is adapted to the sofufeog. Fig. 2a)) so that high velocity
gradients are resolved. The simulation was started withifanamly distributed5 x 5 grid with
Az = Az = 2.5km at levelj = 1. The grid was refined locally until the levgl= 9 is reached,
and all wavelet coefficients with a measure less than 10~ were discarded. We have found

that the number of points in the final adaptive grid\is= 1 556, where the finest local resolution
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hasAz ~ Az ~ 9.7m near the centre of the domain, where the local CFL humbeedbas the
maximum velocityl .6 ms~!, is about6.6. Such a high resolution without adaptivity requires a
uniformly refined1025 x 1025 grid or a total of N = 1050 625 grid points. Clearly, the adaptivity
reduces this huge number of grid points by a factor of abduitor N/N\). However, the quality of
the numerical solution on the adaptive grid is comparabth thiat of the exact solution on the full
grid as depicted in Fig.(2-b), where the relativem.s.error is1.13 x 10~%. Further, running the
model for10=% < e < 10~! confirms that the relative error remains proportional tottlerance

¢, and the CPU time remains proportional to the number of goidts ' (e.g.Fig. 2(d)).

The present test confirms tha} the Crank-Nicolson module calculates the solution adelya
at each time step and) a high resolution can be achieved by reducing the numberidfgints
drastically. However, this analytical test does not solwesquation that governs the dynamics of
an atmospheric motion and, therefore, we need to test ouelmoth a more acceptable case that

is often used as a benchmark problem.

b. Comparison with the Smolarkiewicz’s model

Smolarkiewicz’s deformational flow (Smolarkiewicz 1988)ane of the standard tests for the
verification of advection schemes (Sykes and Henn 1995)revaeset of counter-rotating cells
distorts an initial scalar distribution. In this flow, theng evolution of the scalar field is a fila-
mentary spiral, where the number of spiral turns increasdstlae width of the filamentary arm
decreases (e.g. Staniforth et al. 1987). Therefore, agtioeeeds, the grid must be refined locally
so that the filamentary spiral of the scalar field is resolved.

The present simulation used a domain that exté@nds in both horizontal and vertical direc-
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tions. The deformational velocity field = (u,w) is obtained by solving the nonlinear advec-
tion problem%—;‘ + u - Vu = 0 with an initial condition that is defined by the stream fuoati

U (z, z) = Asin(kz) cos(kz) (e.g. Staniforth et al. 1987), using= 10~3L?/2x, k = 2w /L, and

L = 1 km, whereu = %—f andw = —%—‘i. These parameters result in a velocity field with a
maximum ofl ms~! in both directions. The time evolution of the potential texrgiured(z, z, t)

is obtained by solvin% +u- VO = kV?0 with k = 10~ m?s~! that is adjusted from numerical
experiments so that the solution remains stable for all tifies value of the thermal diffusion
coefficientx is, however,100 times smaller than that was used by Martin and Pielke (1983) i
sea-breeze model. Note that the numerical solution of thel&iewicz’'s model withx = 0 on a
uniformly refined Eulerian grid remains stable only for astione (Smolarkiewicz 1982).

The potential temperature at= 0 min and its time evolution at = 33 min are presented in
Figs. 3@-b), where the minimum resolution &9 m in both directions. As depicted in Fig.d(
the grid is dynamically adapted to resolve the filamentanycstire of the potential temperature.
The number of points in the grid at= 0 min is 7808 and that at = 33 min is 25 344. Clearly,
the number of grid points increased 38 min by about a factor oB so that small filamentary
structures of the spiral scalar field is resolved. Figl)3hows that\/ increases to control the
error dynamically €.g.eq. (3)) by adding/deleting new grid points. This adaptiveutation result

agrees with those results that are presented by other cesesi(e.g. Staniforth et al. 1987; Bacon

et al. 2003), thereby providing a qualitative cross checknael’'s accuracy.
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4. Dry thermal simulation
a. Governing equations

To verify the ability of the proposed model for meteorol@isimulations, the time evolution
of warm thermals in a dry atmosphere is considered, whigrsfihuch insight into more compli-
cated atmospheric dynamics such as mixing and redistoibofiheat and constituent species (Man-
ton 1978). The dynamics of dry thermals with no condensatioaevaporation can be modelled

with the following equations (e.g. Lane 2008):

ou ou ou 1 0P

E+u%+w$ = —%8—x+yvzu (8)
88_1:+ug—1;}+w88—1j = —p—loﬁa—]:%—bvtuVQw (9)
%M%w% W+ V% (10)

%%_2” B (12)

where all symbols are defined in Table 1. Similar to Lane (20@&usion terms are used for nu-
merical modelling of sub-grid scale effects. These equatare solved using periodic conditions
in the horizontal direction for all variables, and homogameDirichlet conditions in the vertical
direction for all velocity components. For the Buoyancydijetonditions in the vertical direction

areb = 0 at the bottom boundary ar% = 0 at the top boundary.

b. Comparison with known thermal dynamics

The present two-dimensional dry simulation i2@km x 10 km domain is similar to that

of Bryan and Fritsch (2002). Assuming a stationary flow a&liyi, i.e. « = 0 andw = 0, a warm
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thermal of radiu® km is placed along the centre line,= 0, of the domain a8 km above the
bottom boundaryife. z = 3 km). The maximum buoyancy &8 x 10-2 m s2 at the centre
of the thermal, which decreases exponentially tm s 2 outside the edge of the thermal. This
buoyancy anomaly is equivalent to a potential temperatareufbation3 K, which is similar to
thermals in a boundary layer (Lane 2008). The evolved sfateedhermal and that of the vertical
velocity att = 12 min is presented in Fig.(4-b). The span-wise vorticity field, := 3—1; — % at

t = 12min in Fig. 4(c) shows that the region of steep buoyancy gradient is assdcveith that
of large velocity gradient (e.g. Carpenter et al. 1990; L2868). Fig. 4d) shows that the grid
has been adapted to local features of the flow, which is thieaeiment of this development, and
its potential advantage for more realistic systems. Theselts have a good qualitative agreement
with those that were predicted by various other numericaleg.g. seeCarpenter et al. 1990;
Wicker and Skamarock 1998; Bryan and Fritsch 2002; Lane 28@8the refs therein)

As discussed in Carpenter et al. (1990), the buoyancy graslieepens as a result of nonlinear
advection, thereby forming small-scale coherent stresttinat require a fine grid. Vertical distri-
butions of the buoyancy field at= 0, 4, 8, 12 min along the centre of the domain are presented
in Fig. 5a). Clearly, a steep vertical gradient of the buoyancy fielduogdn different vertical
locations at various times. It is thus necessary that theewfent or the coarsening must be dic-
tated by the time evolution of local features. Clearly,istdly refined or nested grid models are
not suitable for this problem (e.g. Jablonowski 2004). TiMRAmModel described in Skamarock
et al. (1989) would compare solutions at two different regohs before refining or coarsening the
grid (e.g. Jablonowski 2004; Blayo and Debreu 1999). Inastfthe present model uses a coarse
grid approximation of the coherent thermal dynamics thatfficient to identify the portion of the

grid that must be coarsened or refined. In other words, grintpare rearranged, deleted, and/or
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added so that the buoyancy field is resolved at each time steg a near optimal CPU time.

In Fig. 5(b), the elapsed CPU time [s] at each time step and the numbegpfiae grid points
N that are used at each time step are plotted against the siomtianet [min|], where\" and CPU
time are normalized by the number of grid points and elapg®d @me corresponding to the last
time step at = 12 min respectively. We see that both the CPU time and the nuoflggid points
increase approximately at the same rate with respect tarthdation timet [min]. This indicates
that, if buoyancy field steepens as depicted in Fig) 5the model adds new grid points to resolve
the buoyancy gradient, thereby increasing hatrand CPU time. To explain this increaseAn
and CPU time [s], we have also compared the elapsed CPU tina¢ gach time step with,
showing a linear relationship, as depicted in Fig:)5These results verify that the performance of
the model is asymptotically optimal for a dry thermal sintigia.

The accuracy of this simulation can be quantified by calmdakinetic energy,Ey(t) :=
1 [ |lu(z, t)[*dA, and the potential energy;,(t) := [(zmax — 2)b(x,t)dA, wheredA is an area
element, and the buoyancy is related to the potential testyper byd = 6,(1 + b/g). The total
energy is defined by (t) := Ei(t) + E,(t). Relative deviations of these energies with respect
to, and normalized by their initial valués;, (0) and £,(0) are presented in Fig 6, showing that the
maximum total energy err(ﬁ% is O(1072). The similar accuracy in energy errors between
the present model and the piece-wise parabolic model (PRKZapenter et al. (1990) suggests

the promise of multiscale approximation used here.
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c. Comparison with a reference finite difference model

For a quantitative analysis of the proposed wavelet mogeiformance, a finite difference
method is considered as a reference model, which employsta difference scheme using a
uniformly refined grid without any adaptivity. We have usée same time integration scheme
for the reference and the wavelet model. The comparisondsetihe result of the wavelet model
and that of such a reference model would assess the impronéma&ccuracy and CPU time that
are achieved by adaptivity. Let us now compare the perfocmdetween the wavelet and the
reference model with respect to the simulation presentédbn

First, we compare the number of grid poitks The wavelet model use§ = 1966 att =
0 min, which increases t& = 81 589 att = 12 min so that steep buoyancy gradients are resolved
using a horizontal resolutiohz = 19.5m and a vertical resolutiothz = 9.8 m. The reference
model requires\V' = 1050625 att = 12 min for resolving the steep buoyancy gradient, and the
same grid was required at every time step. Clearly, a drestigction,e.g. at least abou®3%,
of grid points is possible with the wavelet model due to adétgt Secondly, we compare the
CPU time. We have found that the wavelet model takes alityatless CPU time compared to the
reference model. Both models adopted a similar uncondilipistable time integration scheme
for this simulation with a CFL numbel0. This large CFL number confirms that the high CPU

time required by the reference model was due to the fine $pasialution.
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5. Application to vortex pair dynamics

In a stably stratified atmosphere, interactions betwedsutence and buoyancy affects the
merging of a like-sign vortex pair - a primary vortex inteian associated with the inverse energy
cascade from small to large scales (e.g. Hooke and Jonesli¥8ét al. 2002; Brandt and Nomura
2007). The effect of stable stratification on the dynamica wértically oriented vortex pair was
considered in most studies (e.g. Hardenberg et al. 200@reas that of a horizontally oriented
vortex pair was, to the best of knowledge, not well invesgdge.g. Brandt and Nomura 2007).
High resolution numerical simulations of Brandt and Nom(#807) using &2048 x 2048 grid
indicated that the generation of intermittent filamentasgtex structures is a direct result of stable
stratificationvia baroclinically generated torque.

In this section, we study the performance of the proposedissale model for simulating the
vortex interaction phenomena presented in Brandt and Naf2@07). The numerical simulation
was done using the set of equations (8-11), where the ingiakity field consists of a co-rotating
Lamb-Oseen vortex pair. The boundary conditions are sartteas used for thermal simulation
except periodic conditions are used in both directions &oeity. Each initial vortex has a cir-
culationT" = 1 km?/s, and the initial distance between two vortexes,ikm with a/by ~ 0.157,
where the radius of each vortexdaskm. With an initial separation distanég = 1 km, the initial
rotational velocity is about59 m s—!. The computational domain exteritlskm in both horizontal
and vertical directions.

First, the evolution of the vortex pair in a neutral enviremh Fr=o; i.e. the buoyancy fre-
quencyN, is 0 has been investigated, where the Froude number isTFRzb2N,. As depicted in

Figure 7 (top row), the dynamics of the vortex pair in a ndilos is in good qualitative agreement
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with previously known experimental and numerical resuhisreby suggesting the convergence of
the method. Secondly, an ambient stable stratificationp@sad to the model that is characterized
by Fr < oo, where the time evolution of the vortex pair - presented guFeé 7 (bottom row) - has
a good agreement with that is presented in Brandt and Nor@0Gv{.

The effect of stable stratification is studied by simulatimg vortex-merger at various Fri=7,
1.5, 3.0 andcc. In Fig. 8 the vorticity field and the corresponding adaptedgjare presented.
Clearly, all grids are sparsely populated, in other wordisl, goints are dynamically concentrated
in the region of coherent motion, where strong velocity ggatloccurs. Using a reference model
as described in (c), we have found that the wavelet modeksaveutd8% computational work
for those results that are presented in Fig. 8. This extreadaation of computational work is
a result of the high spatial intermittency of the solutiorhisTexample represents two important
phenomena simultaneously - the transfer of energy fromIsm#drge scalewvia vortex merger
and that in the opposite directiona buoyant interaction of vortexes. The result indicates this

model’s potential for more realistic atmospheric simaas.

6. Simulation of flow over isolated topography

The numerical simulation of stratified flows over topograpbibstacles is a significant chal-
lenge, where the terrain-following coordinates are comsnaised in most atmospheric mod-
els .g. see Sdr et al. 2002) In this section, we study how the proposed model can be é&ten
to simulating stratified flows past an isolated topography.

The boundary conditions on the topography are imposed bgnpeterizing the body force

exerted by the topography using the volume averaging tgaenproposed in Whitaker (1996).
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The approach assumes that the topographic obstacle is asgpmedia having a permeabilitix .

A brief derivation of the body force term is presented in thgpAndix. The body force term
implements the homogeneous Dirichlet boundary conditigpr@imately on the surface of the
topography.

An isolated topography is defined by the Witch of Agnesi curve

H

h(z) = W7 (12)

where the mountain height = 400 m and the width isz = 1000 m in the model domain,
40 km x 10 km. The flow is initially isothermal with a temperature @f = 300 K and is driven

by the horizontal wind speed] = 9 m/s. Horizontal boundary conditions are periodic and a van-
ishing vertical gradient is imposed on the model top for aliables. The inverse Froude number,
based on the mountain half-width4§ = 1.11 ~ O(1), which means that non-hydrostatic waves
are expected to propagate.

Numerical verification is also done by comparing resultdhie advection test of Schar et al.
(2002) and with the Immersed Boundary approach of Lundaptiat. (2010) with an equivalent
choice of parameters, but the results are not presentee, Notvever that the topography of the
present test differs from that of the advection test of $ehal. (2002) and the governing set of
equations also differ from both the experiments of Schél.g2002) and that of Lundquist et al.
(2010). This comparison aims to understand an approxinaaggerof values fok, and has found
that the error for imposing boundary conditions on the vigyditeld remains within the wavelet
thresholde - the error tolerance for adpativity — fap=> < K < 10~7. This body force term has
also been treated by the Crank-Nicolson method.

Non-hydrostatic wave propagation past an isolated topdgyras simulated, and the vertical
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velocity is presented in Fig. 9, showing that the presentehtrdcks the topography and wave
propagation by placing grid points adaptively, where ités@ssary. This numerical study presents
how a topographically driven flow can be simulated using theppsed multi-scale approach.
Although the results presented in Fig. 9 exhibits the exgobobn-hydrostatic wave propagation,
more verification is necessary to quantify the numericalrerilowever, this result explains how

the present development can be extended to simulate ofagadlyg driven flows.

7. Summary and future developments
a. Summary

This paper has investigated the possibility and advantafj@esnovel multiscale methodol-
ogy for atmospheric modelling such that the solution is@spnted by only a fraction of wavelet
modes. These wavelet modes are associated with the sigmifigpamics that must be resolved
in a numerical model. All wavelet modes, having coefficidm$ow a threshold, are associated
with the dynamics that must be parameterized, or can berdsdadepending on the specific ap-
plication. The resolved significant part represents laealismall-scale features on a large-scale
background, and results into an adaptive mesh. To the bdstavfledge, this is the first time
attempt of proposing such a multiscale modelling approacdhe field of atmospheric modelling,
where wavelets are used to model multiscale features. Tperges also investigated the nu-
merical simulation of coupled meteorological equationbere the time evolution of nonlinear
dynamics has been treated implicitly with the aid of two awheal algorithms: the Krylov method

and the full approximation scheme. The implicit algoritheing an optimal CPU cost is a clear
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step forward in the field of atmospheric modelling.

Presented numerical experiments were used previouslyh#y atsearchers, and these exam-
ples ¢) exhibit isolated small-scale phenomena) @emand for a large amount of computing
power, and4i:) represent multiscale processes that are also challef@ingmerical atmospheric
models €.g. Carpenter et al. 1990; Brandt and Nomura 2Q0&e have verified numerically that
the computational cost of the proposed model is much lessttiz of a classical finite difference
model for simulations presented in this paper. This higlueédn of CPU time is a result of dis-
carding a large number of wavelet modes associated withahsignificant motion. We have also
verified numerically that the number of grid points in the atilee grid is proportional to the CPU
time that is required for calculating the solution. This mehat local features are computed with
a locally refined mesh without overburdening the global cotaponal cost. The extreme compu-
tational performance of this model with chosen exampleserages that advanced computational

algorithms may add further benefits to the field of atmosghaondelling.

b. Future developments

The results of this work suggests some useful future reledirections. Since the present
two-dimensional results show that the wavelet methodoluag a smart ability of resolving lo-
calized dynamics, an extension of the present work for 3Dukitions is a clear next step. The
wavelet methodology can also be implemented on massivellpbarchitectures to speed up 3D
simulations. Since atmospheric phenomena spans over aavige of length scales, it may not be
possible to resolve the solution at all scales, particylarBD. One must still parameterize certain

small scale features. An understanding of a suitable pasination technique adapted to the
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present methodology is an important future developmenth \af appropriate parameterization
scheme combined with the proposed adaptive computatioodéhmay provide solution to some
of the challenges facing state-of-the-art atmosphericeisod

The set of governing equations for present experiments igpgnoximation to the original
anelastic set of Ogura and Phillips (1962), neglectingic@rivariation of potential temperature
except in the leading order contribution to the buoyancyt@urran and Arakawa 2007). This
approximate form is commonly used for modelling mesoschBnpmena such as sea-breeze cir-
culation, dry convection etce(g. Defant 1951; Martin and Pielke 1983; Alam and Lin 200&8n&
2008) or modelling the atmospheric boundary layer (Moeng 1984e choice of compressible,
anelastic, or approximate anelastic form depends on spegflications or target atmospheric
conditions. The dynamical core of this model consists ofstystem (6) that is written in the com-
pressible form. The proposed implicit time integrationestie aims at solving the system (6) in
its compressible form. However, a concise understandirigeotomputational advantages, using
the Boussinesq approximation also allow comparisons wahyrother models. The verification
of this new development using its compressible form (6) ist@ptial future development of this

study.
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APPENDIX

A technique for modelling the topographic effect

Let us assume that the topography is a submerged porous migdiz permeability/, where
only a fraction,V/, of an elementary volumé;, is occupied with fluid. The procedure starts by

defining two averages of a fluid property,

1 1
i L Ydx and (Y) = — Ydx

Y= v

such that

. vf
() = Mp with A = R

Hence, the effect of the submerged topography can be moddigdaking the averagg) of the
momentum equation over an elementary voluvheontaining fluid and porous media — with the

addition of a body force term,

1

f= —/n- [—Ijp + pValds,
V. Ja

wherep andw denote fluctuations of pressure and velocity within the agielg volume), and A
is the interface between solid and fluid. Cleady— 0 in the fluid region, where topography is
absent, and hencg = 0. Thus the body force works only on the topography.

The volume averaged-{) Euler equation is obtained by dropping the viscous terms fihe
volume averaged Navier-Stokes equation (VANS), which rsvdd in (Whitaker 1996), assuming
that the variation of\ is negligible. Note that the viscus term is also known as thaknan
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correction to porous media flow. Without reproducing theadet derivation of VANS, we can

write the volume averaged Euler equation

Clearly, the body forcef, has been included to model the effect of the solid-fluidraxtBon. This
formulation is extended to the present development by asguthat the bottom topography is a
porous material.

In the present development, a constant eddy viscosity i tasgarameterize the subgrid scale

stressuu term. Following (Whitaker 1996), the body force term is paeterized by
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symbol meaning unit

t time [s]

x horizontal coordinate [km]

2 vertical coordinate [km]

u horizontal velocity ms™]
w vertical velocity ms™!]
00 reference density [kg m ™3]
P pressure [Pal

b buoyancy [ms™?]
N, Brunt-Vaisala frequency ~ [s7!]

v velocity diffusion coefficient [m?s™!]
K thermal diffusion coefficient [m?s™!]

TABLE 1. List of symbols for the numerical simulation of dry theima
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FIG. 1. (a) The (-) line representsin(27x), and the line (—) represents fine grig) gvaluation

c,i of sin(27z). The broken line (-) is its first order interpolant that is based on coarse gd (
evaluationc,i,‘l. On the horizontal ling = 0, coarse grid€) points and fine grid«) points are
shown. Clearly, the grid point atz = 0.5 can be discarded without introducing large error,
and more grid points must be added neas 0.2 or x = 0.8, where|d; | is large. This shows
that the multiscale decomposition is useful to adapt griohfgoso that the error is minimized.
(b) An example of a multi-level grid associated with the waveletomposition (1). Only three
levels are shown# — points inG’/»=», e — points inD’=», and * — points in D=+l where
GImintl = Gimin |y Dimin (W ande) andGimint2 = Gimintl |y Dimin 1 (M, o, andx).
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FIG. 2. Results of the numerical simulation for the toy modell numerical solution:""'m /s,

(b) exact solutionugy'm/s, and(c) the adapted grid for = 107*. (d) The CPU time [s] vs.
number of grid points corresponding 10-¢ < ¢ < 10~!. Clearly, a good agreement is seen
between the numerical solution usihg56 grid points and the exact solution usihg50 625 grid
points. Furthermore, the cost remains proportional/toconfirming the theoretical efficiency of
the multi-level solver.
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FiGc. 3. Time evolutions of the Smolarkiewicz's deformationaiifland corresponding grid adap-
tation: (a) 6 att = O min, (b) 6 att = 33 min, (¢) number of grid points as a function gfshowing
that grid points are adapted to steep gradients dynamjeaity(d) adapted grid at = 33 min. A
minimum resolutiomMz=Az=3.9 m is used only on a fraction of the domain whéraas a sharp
change. As time proceeds, the adaptive grid follows dynaltyithe deformation of the flow.
The number of grid points i8/ = 7808 att = 0 min, which increases t@5 344 att = 33 min,
confirming that the model adds or deletes grid points so tmallsilamentary structure of is

resolved.
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FIG. 4. The result of dry thermal simulationfa= 12 min. (a) potential temperatur® (b) vertical
velocity w, (c) span-wise vorticity,, and(d) adapted grid. Red, blue, and yellow correspond to

positive, negative, and zero values of the respective field.
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FIG. 5. The region of steep buoyancy gradients moves vertiogllyard as time proceeds, thereby
requiring more grid points and CPU time for resolving theyarmy field.(a) Vertical profiles of

b along the centre-line of the domainiat= 0, 4, 8, 12 min. (b) The number of grid pointd/
used at each time step and the elapsed CPU time at each timis pletted as a function of the
simulation timet, where both\ and CPU time are normalized with respect to their corresipgnd
values at = 12 min. (¢) The elapsed CPU time is compared whkh where the linear relationship
is depicted by the straight-line with a slope
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Fic. 6. Time series of the totaly = Ej + E, (- --), kinetic, £, (-), and potential £, (— —)
energy deviations relative to their initial values and naliged by the initial total energy. The
energy behaviour indicates that there is no damping of scartaining significant energy.
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FIG. 7. The merging of a vortex pair at various times at two déférFroude numbers: top
row, Fr=co, bottom row, FrZ.0. The domain extend24 km in both directions. Red and blue
contours represent counter- and clock-wise rotation @y and yellow contours represent no

rotation.
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FIG. 8. The merging of a vortex pair for various Froude numberk (Fop row - vorticity field,

bottom row - adapted grids. Red and blue contours represemiter- and clock-wise rotation
respectively and yellow contours represent no rotatioowtFr, opposite signed vorticity is cre-
ated, which slows down the merging process. The grid is dycally adapted to the intermittent

vorticity field.
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FIG. 9. Top: vertical velocity at = 10.8h. A line (——) that makes @2° angle with the horizontal
plane is also drawn, showing the direction of group velocBpttom: the adapted mesh. The
Witch of Agnesi topography is also shown.
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