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ABSTRACT

Atmospheric motions are generally characterized by a wide range of multiple length and time

scales, and a numerical method must use a fine grid to resolve such a wide range of scales. Further,

a very fine grid requires an extremely small time step in orderto keep explicit time integration

schemes stable. Therefore, high resolution meteorological simulations are very expensive.

A novel multiscale modelling approach is, therefore, presented for simulating atmospheric

flows. In this approach, a prognostic variable representinga highly intermittent multiscale feature

is decomposed into a significant and a nonsignificant part using wavelets, where the significant part

is represented by a small fraction of the wavelet modes. The proposed multiscale methodology has

been verified for simulating three cases: Smolarkiewicz’s deformational flow model; warm ther-

mals in a dry atmosphere; and the dynamics of a vortex pair with ambient stable stratification.

Comparisons with benchmark simulations and with a reference model are evidence for the conver-

gence and stability of the proposed model. The comparison with the reference model has revealed

that about93% of the grid points are not necessary to resolve the significant motion in a warm ther-

mal simulation, saving about96% of the CPU time. Moreover, the CPU time varies linearly with

the number of significant wavelet modes, showing that the present fully implicit adaptive model

is asymptotically optimal for this simulation. These primary results point toward the benefit of

constructing multiscale atmospheric models using the adaptive wavelet methodology.

1. Introduction

A quantitative understanding of the atmosphere requires anaccurate representation of vari-

ous multiscale meteorological processes such as cold fronts, rising thermals, moist convection,
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breaking of gravity waves, and turbulence, which has long been a challenge for numerical atmo-

spheric models (e.g.see Carpenter et al. 1990). Recently, the atmospheric modelling commu-

nity is exploring several approaches to address the scale gap between the large scale physics -

that can be resolved explicitly from first principles - and the smaller scale processes - that need

to be parameterized. These approaches include the use of massively parallel high-performance

computing (HPC) methods, adaptive mesh refinement (AMR) techniques, semi-Lagrangian ad-

vection schemes, Lagrangian stochastic models, and Large Eddy Simulation (LES) methods to

name a few (e.g. Moeng 1984; Skamarock et al. 1989; Wilson andSawford 1995; Behrens 1996;

Rosenberg et al. 2006; Wehner et al. 2008). As a result, the resolution of current state-of-the-art

operational weather prediction and climate models has significantly increased thanks to the lat-

est HPC resources (e.g. ch. 9, Hamilton and Ohfuchi 2008). However, owing to the enormous

range of length- and time-scales, one rarely has the luxury of using HPC resources to explicitly

resolve many important phenomena, for example, the mesoscale circulation that organizes moist

convection. Therefore, much effort has also been paid on parameterizing the effects of un-resolved

physics. The research in two methodologies - the increase ofthe spatial resolution with more

powerful HPC algorithms and the search for the best parameterization method - has been a current

goal of the atmospheric modelling research community (Behrens 1998, 2006; Jablonowski et al.

2006; Bacon et al. 2007). The present paper aims to explore a novel multiscale technique for high-

resolution atmospheric modelling, which uses an optimal number of adaptive grid points to capture

isolated multiscale features.

Indeed, there are several common techniques in this direction, including nested grids, stretched

grids, and AMR methods. Recently, there are growing interests in the AMR approach for simulat-

ing isolated multiscale features in the atmosphere. Skamarock et al. (1989) presented an adaptive
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atmospheric model using the AMR method of Berger and Colella(1989), where a Richardson

method was used fora posterioriestimation of truncation error. Tomlin et al. (1997) studied how

an adaptive grid chemical transport model can reveal new features of plume concentration profiles.

Blayo and Debreu (1999) verified that this approach gains in CPU time by about a factor of3

in the context of simulating a barotropic modon. Behrens (1998) proposed a dynamically adap-

tive shallow water model in the Cartesian x-y plane. Bacon etal. (2000) and Boybeyi et al. (2001)

presented a non-hydrostatic model, OMEGA, using unstructured, triangulated grids that can be dy-

namically or statically adapted to localized features of interest. OMEGA has further been verified

for multiscale simulation of hurricanes (e.g. Bacon et al. 2007). Jablonowski et al. (2006) verified

that a spherical 2D AMR model detects the chosen features reliably, and helps preserve the shape

and amplitude of the transported field while saving computational efforts. Lauter et al. (2007)

presented a barotropic AMR model of the atmosphere. Behrens(2006) discussed a more technical

details on the AMR approach and parameterization in the context of an AMR model. For a review

on the development of classical AMR models for global atmospheric chemistry/transport or op-

erational cyclone forecasting, see the work of Nikiforakis(2005) and Bacon et al. (2003). Most

classical AMR algorithms are designed to reduce local errors estimated according to a Richardson

criterion, where a coarse grid solution is compared with a fine grid solution.

In contrast, a principal objective of the present study aimsto explore a novel multiscale ap-

proach - the adaptive wavelet collocation methodology (AWCM) - that represents the most energy

containing, intermittent motion using a small fraction of the wavelet modes, where the residual

motion corresponds to a large proportion of them. Hence, theAWCM tracks the multiscale en-

ergy contributions associated with intermittent features. In contrast to the classical AMR method,

where an adaptive grid aims to capture localized features ofa flow, the AWCM represents localized
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features in terms of multiscale wavelet modes, where a flow isdecomposed into a significant (i.e.

energy containing) and a nonsignificant (i.e. residual) part. The significant part is calculated on an

adaptive grid that is generated naturally due to discardingthe nonsignificant part. In other words,

the nonsignificant part represents numerical error if the significant part contains all wavelet modes,

resolving a certain desired dynamics.

Despite the AWCM has advantages over the classical AMR approach, there are some chanl-

lenges that needs to be addressed for extending the AWCM to atmospheric applications. First, a

locally refined mesh of the AWCM will also constrain the time step globally for an explicit scheme

satisfying the CFL criterion. To address this disadvantage, Alam et al. (2006) proposed to solve

the governing equations in the simultaneous space-time domain as if the time is a space-like vari-

able. Clearly, this approach is not practical for atmospheric flows. The present work has proposed

to use an implicit scheme for the advection terms as well as for other terms. However, solving a

large nonlinear system at each time step requires the construction of the Jacobian matrix,J , of

the discretized nonlinear system, which will also be multiplied with the error vectorv, and hence

the computational overhead would grow likeO(N 2), whereN is the number of grid points. To

address this overhead, the use of a multi-level solver has been porposed. Secondly, the AWCM

provides an adaptive methodology only, which does not eliminate the need of sub-grid scale pa-

rameterization. As discussed,e.g., in ch.§9.2, Behrens (2006), the parameterization techniques

must also be re-designed in order to take full benefits of adaptive methodologies. The present

study has addressed the first of the above two.

In §2, the proposed multiscale modelling approach is presented. The convergence of the pro-

posed model is verified in§3. Numerical simulations of warm thermals and that of vortex-pair

dynamics are presented in§4 and§5 respectively. The model is applied to simulate a flow over

4



an isolated topography in§6. Finally, the proposed development has been summarized in§7 with

brief discussions and further research in this direction.

2. A wavelet based atmospheric model

a. Background

Over the past25 years, wavelet theory generated a tremendous amount of interests in many ar-

eas of research, ranging from Applied mathematics (e.g. Grossmann and Morlet 1984; Urban 2002;

Cohen 2003) to ocean modelling (e.g. Jameson and Miyama 2000). The introduction of the second-

generation wavelet theory by Sweldens (1995) accelerated in the development of sophisticated

computational fluid dynamics (CFD) techniques for simulating complex geometry flows (Kevla-

han and Vasilyev 2005). Depending on specific applications,wavelet methods can use a Galerkin

approach, where an average residual error is minimized in the entire domain, or can use a colloca-

tion approach, where the residual error vanishes on a set of collocation points. A comprehensive

review on recent developments of wavelet methods for CFD applications can be found in Schnei-

der and Vasilyev (2010), where both the Gelarkin and the collocation based methods are also

reviewed. The present development has been originated fromthe second-generation AWCM for

time dependent (e.g. Vasilyev and Bowman 2000) and elliptic(e.g. Vasilyev and Kevlahan 2005)

problems, and is an extension of the wavelet methodology, studied by Alam (2006), to the field

of atmospheric modelling. This AWCM uses a near optimal degrees of freedom to simulate, for

example, homogeneous isotropic turbulent flows with appropriate sub-grid scale (SGS) parame-

terization (e.g. De Stefano and Vasilyev 2010). To adapt thespatial and temporal step sizes to
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the locally varying solution of a turbulent flow, Alam (2006)proposed a simultaneous space-time

AWCM for solving nonlinear partial differential equations(PDEs) (e.g. Alam et al. 2006). Kevla-

han et al. (2007) compared the solution of the vorticity equation between the space-time AWCM

and a Fourier collocation method, and found that only about3% of the space-time modes are

sufficient to compute a flow with high temporal intermittency. Mehra and Kevlahan (2008) used

spherical wavelets to extend the AWCM for solving PDEs on thesphere.

In summary, the AWCM (e.g. Vasilyev and Bowman 2000; Alam 2006)as well as other wavelet

based methods (see, Schneider and Vasilyev 2010)provide an efficient framework for solving PDEs

or simulating fluid flows, where the solution has important small scale features only on a fraction

of the domain. In the following section, the AWCM that is usedin the present work is described

briefly.

b. The adaptive wavelet collocation methodology (AWCM)

For a brief introduction of the AWCM, let us consider a multiscale decomposition of any prog-

nostic variable

u(x) =
∑

k∈Kj
min

cjmin

k ϕjmin

k (x) +

∞∑

l=jmin

2d−1∑

µ=1

∑

k∈Kµ,l

dµ,l
k ψµ,l

k (x), (1)

whereKjmin andKµ,l are sets representing values of the indexk, [cjmin

k , dµ,l
k ] is a set of coefficients

for the wavelet basis[ϕjmin

k , ψµ,l
k ], jmin, l, µ are integer numbers,d stands for dimension, andx =

(x, y, z). Since this is a fixed time representation,t is omitted for simplicity. For the present work,

we haved = 2 andx = (x, z). The decomposition (1) has a significant part

uj
ǫ(x) =

∑

k∈K
j
min

ǫ

cjmin

k ϕjmin

k (x) +

j−1
∑

l=jmin

2d−1∑

µ=1

∑

k∈K
µ,l
ǫ

dµ,l
k ψµ,l

k (x) (2)
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at levelj, which is given byN wavelets such that|dµ,l
k | ≥ ǫ ||u||p, and a nonsignificant or residual

part that is defined by

uj

inc(x) = u(x)− uj
ǫ(x),

whereǫ is a tolerance that dictates the maximum wavelet levelj and the symbol||u||p represents

a certain measure,e.g. r.m.s. value, ofu. Note, the coefficientsdµ,l
k are scaled with a threshold

ǫ||u||p. In fact, the significant partuj
ǫ is a nonlinear approximation tou, which does not oscillate

at a frequency larger than2j (e.g. Cohen et al. 2001). The maximum error||u(x)− uj
ǫ(x)||p for a

piece-wise smooth functionu(x) can be estimated as

||uj

inc(x)||p = O(N−n/d), N = O(ǫ−d/n), (3)

if wavelets withn vanishing moments are used (Donoho 1992; Vasilyev and Kevlahan 2005; Alam

2006). Clearly, a sufficiently smallǫ implies a largeN and the residual part can be treated as a

numerical error ifN is sufficiently large. For all simulations in this paper, we have usedn =

6. A rigorous mathematical analysis of wavelet theory, whichis not the subject of this article,

can be found in standard text books (e.g. Mallat 1999; Cohen 2003). Primary questions for

extending the AWCM to atmospheric modelling include the method of(i) calculating coefficients

[cjmin

k , dµ,l
k ] (§2.c.1), (ii) approximating spatial derivatives (§2.c.2), and(iii) time evolution for

prognostic variables (§2.g). The following development uses the lifting scheme (e.g. Sweldens

1995) and interpolating wavelets (e.g. Donoho 1992; Vasilyev and Bowman 2000).
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c. Calculation of wavelet coefficients and numerical differentiation

1) CALCULATION OF WAVELET COEFFICIENTS

Let cjk represent a givenu(x) on thek-th grid pointxj
k at levelj; i.e. cjk = u(xj

k). First, the

data set{cjk} is grouped into two:{cj2k′} with those having an even index and{cj2k′+1} with those

having an odd index,i.e. {cjk} = {cj2k′} ∪ {c
j
2k′+1}. For example,{cjk} = {cj0, c

j
1, c

j
2, c

j
3, c

j
4, c

j
5},

{cj2k′} = {cj0, c
j
2, c

j
4}, and{cj2k′+1} = {cj1, c

j
3, c

j
5}. Denotingj-th level as high-resolution, a low-

resolution data is defined by{cj−1
k′ } = {cj2k′}. Secondly, the missing details between high- and

low-resolution information (i.e. betweencjk andcj−1
k′ ) are predicted using polynomials.

Consider polynomialsPn
k′ of degreen based on eachcj−1

k′ and itsn neighbours, predict the value

cj2k′+1 byPn
k′(c

j−1
k′ ), and definedj−1

k′ = 1
2
(cj2k′+1 − P

n
k′(c

j−1
k′ )). The symbolPn

k′(c
j−1
k′ ) means that a

polynomial is based oncj−1
k′ and itsn neighbours, and is evaluated on the corresponding grid point.

Thirdly, low-resolution datacj−1
k′ ’s are updated byPn

k′(d
j−1
k′ ), which ensures that the corresponding

wavelets will have a zero mean (Sweldens 1995). This completes a two-scale decomposition of

[cjk] = [cj−1
k , dj−1

k ] (the ‘′’ is dropped fromk for simplicity), and is known as the second-generation

interpolating wavelet transform.

A forward wavelet transform can be described as

cj−1
k = cj2k + Pn

k (dj−1
k )

dj−1
k = 1

2
[cj2k+1 −P

n
k (cj2k)]







(4)

and a multiscale decomposition[cjmin

k , dl
k], jmin ≤ l ≤ j − 1 is obtained by applying the above

wavelet transform recursively. The original data can be recovered by the following inverse wavelet
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transform

cj2k = cj−1
k −Pn

k (dj−1
k )

cj2k+1 = 2dj−1
k + Pn

k (cj2k)







(5)

at any levelj.

A two-level decomposition ofsin(2πx) is presented in Fig. 1(a), showing thatsin(2πx) is well

approximated locally if the grid point atx = 0.5 is discarded, where|dj
k| is small. Further, large

errors occur nearx = 0.2 andx = 0.8, which can be minimized by adding new grid points.

2) APPROXIMATION OF DERIVATIVES

A spatial derivative is calculated using a collocation method that is based on the multiscale de-

composition of the derivative, and is computed from coefficients of eq. (1) by differentiating poly-

nomials analytically (e.g. see Alam 2006). LetL be a differential operator,d = [cjmin

k , dl
k], jmin ≤

l < j represent the coefficients in (1), andc represent the function evaluation on the corre-

sponding grid. Then, a weighted residual collocation method implies that the residualR :=

Lu(xj
k) − Lu

j
ǫ(x

j
k) vanishes,i.e. Lu(xj

k) = Luj
ǫ(x

j
k), at each grid pointxj

k. For example, know-

ing the functional form of the wavelet basis,Luj
ǫ(x) can be obtained by differentiating eq. (2).

Then, following Alam (2006), we haveLu(xj
k) = DW

−1d, whereD is the resulting differentiation

matrix, d = Wc, andW is the wavelet transform matrix;i.e. the lifting scheme operations as

described above. First,d is obtained by taking the forward wavelet transform (4) of a givenc, and

then the inverse wavelet transform (5) ofd at each levelj recursively results into a polynomial

representation ofuj
ǫ, which is differentiated to find derivatives. The computational cost of this

approach is approximately equal to that of calculating the wavelet coefficients, where neitherD

nor W
−1 is explicitly formed, thanks to the lifting scheme. It can also be shown that the maxi-
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mum error of calculatingq-th order derivative ofu(x) is O(ǫ1−q/n), wheren is the order of the

polynomial (e.g. Vasilyev and Kevlahan 2005; Alam 2006).

d. Grid adaptation methodology

For the present work, the decomposition (1) is associated with a multi-level grid, where there

is a one-to-one correspondence between the grid points and wavelets. An example of a uniform

three-level grid is shown in Fig. 1(b), where a gridGj at levelj is composed of a coarser gridGj−1

and a complementary gridDj−1 such thatGj = Gj−1 ∪ Dj−1 (or Dj−1 := Gj\Gj−1). In other

words, we have

Gj = Gjmin ∪ Djmin ∪ Djmin+1 . . . . . . ∪ Dj−2

︸ ︷︷ ︸

Gj−1

∪Dj−1,

whereGjmin denotes an arbitrary coarsest level grid, containingnx × nz points such thatnx =

2j−1mx andnz = 2j−1mz. For the two-dimensional example grid shown in Fig. 1(b), wehave

j = jmin + 2 andmx = mz = 3. There are two advantages with the nonlinear approximation(2):

First, the numerical error associated with the approximation (2) isO(ǫ). Therefore, one has the

flexibility and guarantee of prescribinga priori error tolerance. Secondly, a fraction of the grid

points at levelj is used for calculatinguj
ǫ and reducingǫ by a factor of2 does not imply doubling

the numberN of grid points (e.g. eq. (3)). A more detailed theoretical discussion of this nonlinear

approximation is given by DeVore (1998). Moreover, for a piecewise smooth functionu(x), the

given toleranceǫ determines the maximum levelj or the minimum scale2−j. Therefore, the

wavelet methodology provides a natural framework for grid adaptation, where an arbitrary coarsest

level gridGjmin is extended by adding fractions of complementary grids thatare associated with the

nonlinear approximation based on the given toleranceǫ. The grid adaption methodology is now
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outlined assuming that the solutionu is exactly known. Letj = jmin.

i. The significant solutionuj
ǫ and the associated adaptive gridGj

ǫ are formed by discarding all

nonsignificant points for which|dµ,j
k | < ǫ ||u||p.

ii. The refinementof Gj
ǫ follows by constructing anadjacent zoneDj

ǫ that contains only those

points from the complementary gridDj, which belong to a set of nearest neighbours of only

significantpoints fromGj
ǫ .

iii. The adapted gridGj+1
ǫ = Gj

ǫ ∪ D
j
ǫ is formed by tuning the adjacent zoneDj

ǫ so that wavelet

transforms and their inverse are reproducible. This is known asperfect reconstructionpro-

cess.

iv. If ||uj

inc||p > ǫ, then steps 1 to 3 are repeated withj ←֓ j + 1. Otherwise,Gj+1
ǫ is taken to

be the final adapted grid.

The above procedure results into an adaptive gridGj
ǫ that contains onlyN points. It has been

verified that thisN is much smaller than the total number of grid pointsN = 2jd on the uniformly

refined gridGj at scale2−j for functions with highly localized features such as the velocity or the

vorticity field (Vasilyev and Kevlahan 2005; Alam et al. 2006).

A principal objective of this study aims to develop a multiscale methodology for atmospheric

modelling. The set of governing equations that form the dynamical core of the proposed model is

now presented.
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e. Governing equations – general form

At the heart of an atmospheric model, a set of conservation principles forms a coupled set of

partial differential equations (PDEs) that must be solved simultaneously. A system of prognostic

equations describing an atmospheric motion can be compactly written as

∂Ψ

∂t
+ u · ∇Ψ = R, (6)

whereu is a two- or three-dimensional velocity vector,Ψ is a vector ofd state variables includ-

ing u, andR is a vector that represents all forces, feedbacks, sinks, and sources (e.g. sub-grid

scale or pressure gradient terms). Typically, the components of Ψ are density, velocity, potential

temperature, and/or trace gas concentration (e.g. see ch. 2, Pielke 2002).

The actual components ofΨ andR depends on the specific application. The system (6) forms

the dynamical core of the model, which is currently being tested along with Boussinesq approx-

imation |1
ρ

Du

Dt
| ≪ η for the purpose of comparison with similar models, whereρ denotes density

and0 < η < 1 is a small number (e.g. Defant 1951; Martin and Pielke 1983; Alam and Lin 2008).

For example, Alam (2010) verified the present model for a 3D sea-breeze circulation system. The

present paper examines the computational benefits of this development using 2D simulations.

f. Boundary conditions

The model is designed for implementing three types of physical boundary conditions - a peri-

odic condition,e.g.Ψ(x + L · n̂) = Ψ(x), a Dirichlet condition,e.g.Ψ(L) = Ψ0, or a Neumann

condition,e.g. Ψ′(x) · n̂ = 0, whereL = (Lx, Lz), x = (x, z), andn̂ denotes the outward unit

normal corresponding to the boundary. A non-reflecting boundary condition is used to eliminate
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non-physical waves reflected from a solid boundary (e.g. Lane 2008).

g. The numerical scheme

1) TIME INTEGRATION

First, the system (6) along with Boussinesq approximation is discretized using a Crank-Nicolson

scheme,

2Ψn+1

∆t
+ un+1 · ∇Ψ

n+1 −R
n+1 =

2Ψn

∆t
− un · ∇Ψ

n + R
n, ∇ · un+1 = 0, (7)

which is second order accurate in time, unconditionally stable for a linear equation, and there

is no numerical dissipative error (e.g.Ch.4 of Tannehill et al. 1997). Note that the fully implicit

treatment of advection is a distinct feature of the present development. For simplicity, we write (7)

using a compact notationLu = f .

Secondly, pressure gradient forces∇P n+1 in (6) have been treated implicitly in (7) so that the

time evolution of the velocity satisfies the divergence freecondition∇ · un+1 = 0, such that

∇2P n+1 =
1

∆t
∇ · (un+1 + ∆t∇P n+1

︸ ︷︷ ︸

u
∗

),

whereu∗ is the solution of (6) for which∇ · u∗ 6= 0. The Crank-Nicholson time integration (7),

e.g. for advection, requires solving a nonlinear systemLu = f (eq. (7)) at each time stepn + 1.

A multi-level solver is proposed in this paper, whereLjuj = f j denotes a discretization of eq. (7)

at levelj. The pressure equation is solved with a multigrid solver.
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2) THE FAS-JFNK METHODOLOGY

For the dynamical core of the present model, benefits of the Jacobian-free Newton-Krylov (JFNK)

method (e.g., Knoll and Keyes 2004) are combined with that ofthe full approximation scheme

(FAS) (chapter 8.3, Wesseling 2004) so that fastest waves are either eliminated or damped with a

fully implicit method (e.g. Reisner et al. 2000; Bernsen et al. 2010) (hereinafter calledFAS-JFNK).

Theoretical details of both JFNK and FAS can be seen in cited references,e.g.Knoll and Keyes

(2004); Wesseling (2004) (and the refs therein), and the computational power of these algorithms

are well established such as in CFD. Neither these two approaches got a combined usage in CFD,

nor their benefits are well established in atmospheric modelling. The FAS-JFNK methodology is

now presented briefly.

Let uk be an approximate solution of (7). The present JFNK method solves the linear model

J ks = f − Luk of (7) using a Krylov method withν1 iterations,e.g. GMRES (e.g. Saad and

Schultz 1986), and completes a Newton step,uk+1 = uk + s, until a stopping condition is sat-

isfied. Instead of calculating the Jacobian matrixJ k explicitly, the matrix-vector productJ ks is

approximatedvia a Fréchet derivative (e.g. eq.(2), Reisner et al. 2000). Inthe present context,

JFNK is used as a relaxation method at intermediate levels ofFAS iterations, where the iteration

is stopped either the condition||f − Luk+1||2 ≤ γ||f − Luk||2 is satisfied orν2 steps of Newton

iterations are completed, whichever occurs the first. In allpresented experiments, Krylov steps

ν1 = 2 to 5 , γ = 0.5, and Newton stepsν2 = 2 or 3 are used during a relaxation sweep. Note that

not pre-conditioning matrix is constructed, which is a significant difference the way acutal JFNK

method would be used.

Denoting the JFNK method symbolically byJFNK (Ljuj, f j), let us now present the FAS-
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JFNK solver below. In the following algorithm, the symbolRju means the truncation of the

multiscale decomposition (1) ofu at levelj. Following Wesseling (2004), the FAS equations are

defined byLj−1uj−1 = Lj−1Rj−1uj +Rj−1[f j − Lj(uj)]
︸ ︷︷ ︸

fj−1

at all levels< j, andLjuj = f j is used

at levelj.

i. beginFAS-JFNK(Ljuj, f j) at levelj

ii. if j = jmin then callJFNK (Ljuj, f j)

iii. else callFAS-JFNK (Lj−1uj−1, f j−1) on the coarser levelj−1, wheref j−1 = Lj−1Rj−1uj+

Rj−1[f j −Lj(uj)]

iv. endFAS-JFNK(· · · ) if tolerance is satisfied.

Numerical experiments have verified theO(N ) complexity - a linear increase of the CPU

time with an increase of the number of grid pointsN - of the proposed multiscale modelling

approach that uses the AWCM and FAS-JFNK. Note that the use ofa JFNK type Krylov method

in smoothing sweeps is a distinct feature of this development compared to classical FAS method.

In all numerical experiments, the present FAS solver have not used any anisotropic coarsening or

refinement to accelerate convergence, which is one important advantage of using Krylov method

instead of Jacobi iteration. Let us now present numerical results verifying the proposed model.
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3. Model verification

a. Analytical verification

For an analytical verification, the right hand side of (6) is defined byR(Ψ) = ν∇2
Ψ. Then,

the Crank-Nicolson method solves the nonlinear system

−ν∇2
Ψ

n+1 + un+1 ·∇Ψ
n+1 +

2

∆t
Ψ

n+1 = f

at each time stepn + 1, wheref is the information from time stepn. This is an ideal toy model

for numerical verification because the dynamical core of theproposed model uses a FAS-JFNK

algorithm to solve the above system at each time step. To examine the convergence, we define a

Reynolds number,Re = UL
ν

, whereU = 1 m s−1, L = 1 km, and a CFL number,||Ψ||∞∆t
∆x

, where

∆x is the finest resolution. The convergence was examined for10 ≤ Re ≤ 105 and1 ≤ CFL≤ 7,

as well as for varyingǫ.

For this toy model,f is defined exactly by substituting into the above equation a givenΨ
n+1 =

[un+1, vn+1]T that represents a Lamb-Oseen vortex (e.g. see ch.13.1, Saffman 1992)with a max-

imum velocity 1.6 m s−1 near the centre of the domain that extends10 km in each directions.

Results in Fig. 2 corresponds toRe ∼ 105 and CFL∼ 6.6. The numerical solutionun+1, the exact

solutionun+1
ex , and the corresponding adapted grid is presented in Fig. 2, where Fig. 2(c) shows

that the grid is refined locally, and is adapted to the solution (e.g. Fig. 2(a)) so that high velocity

gradients are resolved. The simulation was started with a uniformly distributed5 × 5 grid with

∆x = ∆z = 2.5 km at levelj = 1. The grid was refined locally until the levelj = 9 is reached,

and all wavelet coefficients with a measure less thanǫ = 10−4 were discarded. We have found

that the number of points in the final adaptive grid isN = 1 556, where the finest local resolution
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has∆x ≈ ∆z ≈ 9.7 m near the centre of the domain, where the local CFL number, based on the

maximum velocity1.6 m s−1, is about6.6. Such a high resolution without adaptivity requires a

uniformly refined1025× 1025 grid or a total ofN = 1 050 625 grid points. Clearly, the adaptivity

reduces this huge number of grid points by a factor of about625 (orN/N ). However, the quality of

the numerical solution on the adaptive grid is comparable with that of the exact solution on the full

grid as depicted in Fig. 2(a-b), where the relativer.m.s.error is1.13× 10−4. Further, running the

model for10−6 ≤ ǫ ≤ 10−1 confirms that the relative error remains proportional to thetolerance

ǫ, and the CPU time remains proportional to the number of grid pointsN (e.g.Fig. 2(d)).

The present test confirms that (i) the Crank-Nicolson module calculates the solution accurately

at each time step and (ii) a high resolution can be achieved by reducing the number of grid points

drastically. However, this analytical test does not solve an equation that governs the dynamics of

an atmospheric motion and, therefore, we need to test our model with a more acceptable case that

is often used as a benchmark problem.

b. Comparison with the Smolarkiewicz’s model

Smolarkiewicz’s deformational flow (Smolarkiewicz 1982) is one of the standard tests for the

verification of advection schemes (Sykes and Henn 1995), where a set of counter-rotating cells

distorts an initial scalar distribution. In this flow, the time evolution of the scalar field is a fila-

mentary spiral, where the number of spiral turns increases and the width of the filamentary arm

decreases (e.g. Staniforth et al. 1987). Therefore, as timeproceeds, the grid must be refined locally

so that the filamentary spiral of the scalar field is resolved.

The present simulation used a domain that extends2 km in both horizontal and vertical direc-
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tions. The deformational velocity fieldu = (u, w) is obtained by solving the nonlinear advec-

tion problem∂u

∂t
+ u · ∇u = 0 with an initial condition that is defined by the stream function

Ψ(x, z) = A sin(kx) cos(kz) (e.g. Staniforth et al. 1987), usingA = 10−3L2/2π, k = 2π/L, and

L = 1 km, whereu = ∂Ψ
∂z

andw = −∂Ψ
∂x

. These parameters result in a velocity field with a

maximum of1 m s−1 in both directions. The time evolution of the potential temperatureθ(x, z, t)

is obtained by solving
∂θ

∂t
+u ·∇θ = κ∇2θ with κ = 10−1 m2 s−1 that is adjusted from numerical

experiments so that the solution remains stable for all time. This value of the thermal diffusion

coefficientκ is, however,100 times smaller than that was used by Martin and Pielke (1983) in a

sea-breeze model. Note that the numerical solution of the Smolarkiewicz’s model withκ = 0 on a

uniformly refined Eulerian grid remains stable only for a short time (Smolarkiewicz 1982).

The potential temperature att = 0 min and its time evolution att = 33 min are presented in

Figs. 3(a-b), where the minimum resolution is3.9 m in both directions. As depicted in Fig. 3(c),

the grid is dynamically adapted to resolve the filamentary structure of the potential temperature.

The number of points in the grid att = 0 min is 7 808 and that att = 33 min is 25 344. Clearly,

the number of grid points increased in33 min by about a factor of3 so that small filamentary

structures of the spiral scalar field is resolved. Fig. 3(d) shows thatN increases to control the

error dynamically (e.g.eq. (3)) by adding/deleting new grid points. This adaptive simulation result

agrees with those results that are presented by other researchers (e.g. Staniforth et al. 1987; Bacon

et al. 2003), thereby providing a qualitative cross check onmodel’s accuracy.
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4. Dry thermal simulation

a. Governing equations

To verify the ability of the proposed model for meteorological simulations, the time evolution

of warm thermals in a dry atmosphere is considered, which offers much insight into more compli-

cated atmospheric dynamics such as mixing and redistribution of heat and constituent species (Man-

ton 1978). The dynamics of dry thermals with no condensationor evaporation can be modelled

with the following equations (e.g. Lane 2008):

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −

1

ρ0

∂P

∂x
+ ν∇2u (8)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −

1

ρ0

∂P

∂z
+ b+ ν∇2w (9)

∂b

∂t
+ u

∂b

∂x
+ w

∂b

∂z
= −wN2

b + κ∇2b (10)

∂u

∂x
+
∂w

∂z
= 0 (11)

where all symbols are defined in Table 1. Similar to Lane (2008), diffusion terms are used for nu-

merical modelling of sub-grid scale effects. These equations are solved using periodic conditions

in the horizontal direction for all variables, and homogeneous Dirichlet conditions in the vertical

direction for all velocity components. For the Buoyancy field, conditions in the vertical direction

areb = 0 at the bottom boundary and∂b
∂z

= 0 at the top boundary.

b. Comparison with known thermal dynamics

The present two-dimensional dry simulation in a20 km × 10 km domain is similar to that

of Bryan and Fritsch (2002). Assuming a stationary flow initially, i.e. u = 0 andw = 0, a warm
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thermal of radius2 km is placed along the centre line,x = 0, of the domain at3 km above the

bottom boundary (i.e. z = 3 km). The maximum buoyancy is9.8 × 10−2 m s−2 at the centre

of the thermal, which decreases exponentially to0 m s−2 outside the edge of the thermal. This

buoyancy anomaly is equivalent to a potential temperature perturbation3 K, which is similar to

thermals in a boundary layer (Lane 2008). The evolved state of the thermal and that of the vertical

velocity att = 12 min is presented in Fig. 4(a-b). The span-wise vorticity fieldωy := ∂w
∂x
− ∂u

∂z
at

t = 12 min in Fig. 4(c) shows that the region of steep buoyancy gradient is associated with that

of large velocity gradient (e.g. Carpenter et al. 1990; Lane2008). Fig. 4(d) shows that the grid

has been adapted to local features of the flow, which is the achievement of this development, and

its potential advantage for more realistic systems. These results have a good qualitative agreement

with those that were predicted by various other numerical models (e.g. see, Carpenter et al. 1990;

Wicker and Skamarock 1998; Bryan and Fritsch 2002; Lane 2008, and the refs therein).

As discussed in Carpenter et al. (1990), the buoyancy gradient steepens as a result of nonlinear

advection, thereby forming small-scale coherent structures that require a fine grid. Vertical distri-

butions of the buoyancy field att = 0, 4, 8, 12 min along the centre of the domain are presented

in Fig. 5(a). Clearly, a steep vertical gradient of the buoyancy field occurs in different vertical

locations at various times. It is thus necessary that the refinement or the coarsening must be dic-

tated by the time evolution of local features. Clearly, statically refined or nested grid models are

not suitable for this problem (e.g. Jablonowski 2004). The AMR model described in Skamarock

et al. (1989) would compare solutions at two different resolutions before refining or coarsening the

grid (e.g. Jablonowski 2004; Blayo and Debreu 1999). In contrast, the present model uses a coarse

grid approximation of the coherent thermal dynamics that issufficient to identify the portion of the

grid that must be coarsened or refined. In other words, grid points are rearranged, deleted, and/or
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added so that the buoyancy field is resolved at each time step using a near optimal CPU time.

In Fig. 5(b), the elapsed CPU time [s] at each time step and the number of adaptive grid points

N that are used at each time step are plotted against the simulation timet [min], whereN and CPU

time are normalized by the number of grid points and elapsed CPU time corresponding to the last

time step att = 12 min respectively. We see that both the CPU time and the numberof grid points

increase approximately at the same rate with respect to the simulation timet [min]. This indicates

that, if buoyancy field steepens as depicted in Fig. 5(a), the model adds new grid points to resolve

the buoyancy gradient, thereby increasing bothN and CPU time. To explain this increase inN

and CPU time [s], we have also compared the elapsed CPU time [s] at each time step withN ,

showing a linear relationship, as depicted in Fig. 5(c). These results verify that the performance of

the model is asymptotically optimal for a dry thermal simulation.

The accuracy of this simulation can be quantified by calculating kinetic energy,Ek(t) :=

1
2

∫
|u(x, t)|2dA, and the potential energy,Ep(t) :=

∫
(zmax − z)b(x, t)dA, wheredA is an area

element, and the buoyancy is related to the potential temperature byθ = θ0(1 + b/g). The total

energy is defined byE(t) := Ek(t) + Ep(t). Relative deviations of these energies with respect

to, and normalized by their initial valuesEk(0) andEp(0) are presented in Fig 6, showing that the

maximum total energy errorE(t)−E(0)
E(0)

isO(10−3). The similar accuracy in energy errors between

the present model and the piece-wise parabolic model (PPM) of Carpenter et al. (1990) suggests

the promise of multiscale approximation used here.
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c. Comparison with a reference finite difference model

For a quantitative analysis of the proposed wavelet model’sperformance, a finite difference

method is considered as a reference model, which employs a finite difference scheme using a

uniformly refined grid without any adaptivity. We have used the same time integration scheme

for the reference and the wavelet model. The comparison between the result of the wavelet model

and that of such a reference model would assess the improvement in accuracy and CPU time that

are achieved by adaptivity. Let us now compare the performance between the wavelet and the

reference model with respect to the simulation presented in§4b.

First, we compare the number of grid pointsN . The wavelet model usesN = 1 966 at t =

0 min, which increases toN = 81 589 at t = 12 min so that steep buoyancy gradients are resolved

using a horizontal resolution∆x = 19.5 m and a vertical resolution∆z = 9.8 m. The reference

model requiresN = 1 050 625 at t = 12 min for resolving the steep buoyancy gradient, and the

same grid was required at every time step. Clearly, a drasticreduction,e.g. at least about93%,

of grid points is possible with the wavelet model due to adaptivity. Secondly, we compare the

CPU time. We have found that the wavelet model takes about96% less CPU time compared to the

reference model. Both models adopted a similar unconditionally stable time integration scheme

for this simulation with a CFL number10. This large CFL number confirms that the high CPU

time required by the reference model was due to the fine spatial resolution.
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5. Application to vortex pair dynamics

In a stably stratified atmosphere, interactions between turbulence and buoyancy affects the

merging of a like-sign vortex pair - a primary vortex interaction associated with the inverse energy

cascade from small to large scales (e.g. Hooke and Jones 1986; Iida et al. 2002; Brandt and Nomura

2007). The effect of stable stratification on the dynamics ofa vertically oriented vortex pair was

considered in most studies (e.g. Hardenberg et al. 2000), whereas that of a horizontally oriented

vortex pair was, to the best of knowledge, not well investigated (e.g. Brandt and Nomura 2007).

High resolution numerical simulations of Brandt and Nomura(2007) using a2048 × 2048 grid

indicated that the generation of intermittent filamentary vortex structures is a direct result of stable

stratificationvia baroclinically generated torque.

In this section, we study the performance of the proposed multiscale model for simulating the

vortex interaction phenomena presented in Brandt and Nomura (2007). The numerical simulation

was done using the set of equations (8-11), where the initialvelocity field consists of a co-rotating

Lamb-Oseen vortex pair. The boundary conditions are same asthose used for thermal simulation

except periodic conditions are used in both directions for velocity. Each initial vortex has a cir-

culationΓ = 1 km2/s, and the initial distance between two vortexes isb0 km with a/b0 ∼ 0.157,

where the radius of each vortex isa km. With an initial separation distanceb0 = 1 km, the initial

rotational velocity is about159 m s−1. The computational domain extends24 km in both horizontal

and vertical directions.

First, the evolution of the vortex pair in a neutral environment, Fr=∞; i.e. the buoyancy fre-

quencyNb is 0 has been investigated, where the Froude number is Fr =Γ/2πb20Nb. As depicted in

Figure 7 (top row), the dynamics of the vortex pair in a neutral flow is in good qualitative agreement
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with previously known experimental and numerical results,thereby suggesting the convergence of

the method. Secondly, an ambient stable stratification is imposed to the model that is characterized

by Fr<∞, where the time evolution of the vortex pair - presented in Figure 7 (bottom row) - has

a good agreement with that is presented in Brandt and Nomura (2007).

The effect of stable stratification is studied by simulatingthe vortex-merger at various Fr =0.7,

1.5, 3.0 and∞. In Fig. 8 the vorticity field and the corresponding adapted grids are presented.

Clearly, all grids are sparsely populated, in other words, grid points are dynamically concentrated

in the region of coherent motion, where strong velocity gradient occurs. Using a reference model

as described in (c), we have found that the wavelet model saves about98% computational work

for those results that are presented in Fig. 8. This extreme reduction of computational work is

a result of the high spatial intermittency of the solution. This example represents two important

phenomena simultaneously - the transfer of energy from small to large scalesvia vortex merger

and that in the opposite directionvia buoyant interaction of vortexes. The result indicates this

model’s potential for more realistic atmospheric simulations.

6. Simulation of flow over isolated topography

The numerical simulation of stratified flows over topographic obstacles is a significant chal-

lenge, where the terrain-following coordinates are commonly used in most atmospheric mod-

els (e.g. see Scḧar et al. 2002). In this section, we study how the proposed model can be extended

to simulating stratified flows past an isolated topography.

The boundary conditions on the topography are imposed by parameterizing the body force

exerted by the topography using the volume averaging technique proposed in Whitaker (1996).
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The approach assumes that the topographic obstacle is a porous media having a permeability,K.

A brief derivation of the body force term is presented in the Appendix. The body force term

implements the homogeneous Dirichlet boundary condition approximately on the surface of the

topography.

An isolated topography is defined by the Witch of Agnesi curve:

h(x) =
H

1 + (x/a)2
, (12)

where the mountain height isH = 400 m and the width isa = 1 000 m in the model domain,

40 km × 10 km. The flow is initially isothermal with a temperature ofθ0 = 300 K and is driven

by the horizontal wind speed,U = 9 m/s. Horizontal boundary conditions are periodic and a van-

ishing vertical gradient is imposed on the model top for all variables. The inverse Froude number,

based on the mountain half-width isNa
U

= 1.11 ∼ O(1), which means that non-hydrostatic waves

are expected to propagate.

Numerical verification is also done by comparing results with the advection test of Schär et al.

(2002) and with the Immersed Boundary approach of Lundquistet al. (2010) with an equivalent

choice of parameters, but the results are not presented. Note, however that the topography of the

present test differs from that of the advection test of Schär et al. (2002) and the governing set of

equations also differ from both the experiments of Schär etal. (2002) and that of Lundquist et al.

(2010). This comparison aims to understand an approximate range of values forK, and has found

that the error for imposing boundary conditions on the velocity field remains within the wavelet

thresholdǫ - the error tolerance for adpativity – for10−5 ≤ K ≤ 10−7. This body force term has

also been treated by the Crank-Nicolson method.

Non-hydrostatic wave propagation past an isolated topography is simulated, and the vertical

25



velocity is presented in Fig. 9, showing that the present model tracks the topography and wave

propagation by placing grid points adaptively, where it is necessary. This numerical study presents

how a topographically driven flow can be simulated using the proposed multi-scale approach.

Although the results presented in Fig. 9 exhibits the expected non-hydrostatic wave propagation,

more verification is necessary to quantify the numerical error. However, this result explains how

the present development can be extended to simulate orographically driven flows.

7. Summary and future developments

a. Summary

This paper has investigated the possibility and advantagesof a novel multiscale methodol-

ogy for atmospheric modelling such that the solution is represented by only a fraction of wavelet

modes. These wavelet modes are associated with the significant dynamics that must be resolved

in a numerical model. All wavelet modes, having coefficientsbelow a threshold, are associated

with the dynamics that must be parameterized, or can be discarded, depending on the specific ap-

plication. The resolved significant part represents localized small-scale features on a large-scale

background, and results into an adaptive mesh. To the best ofknowledge, this is the first time

attempt of proposing such a multiscale modelling approach in the field of atmospheric modelling,

where wavelets are used to model multiscale features. The paper has also investigated the nu-

merical simulation of coupled meteorological equations, where the time evolution of nonlinear

dynamics has been treated implicitly with the aid of two advanced algorithms: the Krylov method

and the full approximation scheme. The implicit algorithm using an optimal CPU cost is a clear
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step forward in the field of atmospheric modelling.

Presented numerical experiments were used previously by other researchers, and these exam-

ples (i) exhibit isolated small-scale phenomena, (ii) demand for a large amount of computing

power, and (iii) represent multiscale processes that are also challengingfor numerical atmospheric

models (e.g. Carpenter et al. 1990; Brandt and Nomura 2007). We have verified numerically that

the computational cost of the proposed model is much less than that of a classical finite difference

model for simulations presented in this paper. This high reduction of CPU time is a result of dis-

carding a large number of wavelet modes associated with the nonsignificant motion. We have also

verified numerically that the number of grid points in the adaptive grid is proportional to the CPU

time that is required for calculating the solution. This means that local features are computed with

a locally refined mesh without overburdening the global computational cost. The extreme compu-

tational performance of this model with chosen examples encourages that advanced computational

algorithms may add further benefits to the field of atmospheric modelling.

b. Future developments

The results of this work suggests some useful future research directions. Since the present

two-dimensional results show that the wavelet methodologyhas a smart ability of resolving lo-

calized dynamics, an extension of the present work for 3D simulations is a clear next step. The

wavelet methodology can also be implemented on massively parallel architectures to speed up 3D

simulations. Since atmospheric phenomena spans over a widerange of length scales, it may not be

possible to resolve the solution at all scales, particularly in 3D. One must still parameterize certain

small scale features. An understanding of a suitable parameterization technique adapted to the
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present methodology is an important future development. With an appropriate parameterization

scheme combined with the proposed adaptive computational model may provide solution to some

of the challenges facing state-of-the-art atmospheric models.

The set of governing equations for present experiments is anapproximation to the original

anelastic set of Ogura and Phillips (1962), neglecting vertical variation of potential temperature

except in the leading order contribution to the buoyancy term (Durran and Arakawa 2007). This

approximate form is commonly used for modelling mesoscale phenomena such as sea-breeze cir-

culation, dry convection etc. (e.g. Defant 1951; Martin and Pielke 1983; Alam and Lin 2008; Lane

2008), or modelling the atmospheric boundary layer (Moeng 1984).The choice of compressible,

anelastic, or approximate anelastic form depends on specific applications or target atmospheric

conditions. The dynamical core of this model consists of thesystem (6) that is written in the com-

pressible form. The proposed implicit time integration scheme aims at solving the system (6) in

its compressible form. However, a concise understanding ofthe computational advantages, using

the Boussinesq approximation also allow comparisons with many other models. The verification

of this new development using its compressible form (6) is a potential future development of this

study.
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APPENDIX

A technique for modelling the topographic effect

Let us assume that the topography is a submerged porous mediawith a permeabilityK, where

only a fraction,Vf , of an elementary volume,V, is occupied with fluid. The procedure starts by

defining two averages of a fluid property,ψ:

ψ̄ =
1

Vf

∫

Vf

ψdx and 〈ψ〉 =
1

V

∫

Vf

ψdx

such that

〈ψ〉 = λψ̄ with λ =
Vf

V
.

Hence, the effect of the submerged topography can be modeled– by taking the average〈·〉 of the

momentum equation over an elementary volumeV containing fluid and porous media – with the

addition of a body force term,

f =
1

V

∫

A

n · [−I p̃+ µ∇ũ]ds,

wherep̃ andũ denote fluctuations of pressure and velocity within the averaging volumeV, andA

is the interface between solid and fluid. Clearly,A = 0 in the fluid region, where topography is

absent, and hencef = 0. Thus the body force works only on the topography.

The volume averaged (〈·〉) Euler equation is obtained by dropping the viscous terms from the

volume averaged Navier-Stokes equation (VANS), which is derived in (Whitaker 1996), assuming

that the variation ofλ is negligible. Note that the viscus term is also known as the Brinkman
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correction to porous media flow. Without reproducing the detailed derivation of VANS, we can

write the volume averaged Euler equation

∂ū

∂t
+ ū∇ · ū = −

1

ρ
∇p̄ + g −

1

λ
∇ · (ūū) + f/ρ.

Clearly, the body force,f , has been included to model the effect of the solid-fluid interaction. This

formulation is extended to the present development by assuming that the bottom topography is a

porous material.

In the present development, a constant eddy viscosity is used to parameterize the subgrid scale

stressūū term. Following (Whitaker 1996), the body force term is parameterized by

f = −
µ

K
〈u〉.
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1 List of symbols for the numerical simulation of dry thermals. 41
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symbol meaning unit
t time [s]
x horizontal coordinate [km]
z vertical coordinate [km]
u horizontal velocity [m s−1]
w vertical velocity [m s−1]
ρ0 reference density [kg m−3]
P pressure [Pa]
b buoyancy [m s−2]
Nb Brunt-Vaisala frequency [s−1]
ν velocity diffusion coefficient [m2 s−1]
κ thermal diffusion coefficient [m2 s−1]

TABLE 1. List of symbols for the numerical simulation of dry thermals.
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FIG. 1. (a) The (···) line representssin(2πx), and the line (—) represents fine grid (∗) evaluation
cjk of sin(2πx). The broken line (-·-) is its first order interpolant that is based on coarse grid (◦)
evaluationcj−1

k′ . On the horizontal liney = 0, coarse grid (◦) points and fine grid (∗) points are
shown. Clearly, the grid point∗ at x = 0.5 can be discarded without introducing large error,
and more grid points must be added nearx = 0.2 or x = 0.8, where|dj

k| is large. This shows
that the multiscale decomposition is useful to adapt grid points so that the error is minimized.
(b) An example of a multi-level grid associated with the waveletdecomposition (1). Only three
levels are shown:� – points inGjmin, • – points inDjmin, and∗ – points inDjmin+1, where
Gjmin+1 = Gjmin ∪ Djmin (� and•) andGjmin+2 = Gjmin+1 ∪ Djmin+1 (�, •, and∗).
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FIG. 2. Results of the numerical simulation for the toy model:(a) numerical solutionun+1m/s,
(b) exact solutionun+1

ex m/s, and(c) the adapted grid forǫ = 10−4. (d) The CPU time [s] vs.
number of grid points corresponding to10−6 ≤ ǫ ≤ 10−1. Clearly, a good agreement is seen
between the numerical solution using1 556 grid points and the exact solution using1 050 625 grid
points. Furthermore, the cost remains proportional toN , confirming the theoretical efficiency of
the multi-level solver.
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FIG. 3. Time evolutions of the Smolarkiewicz’s deformational flow and corresponding grid adap-
tation: (a) θ at t = 0 min, (b) θ at t = 33 min, (c) number of grid points as a function oft, showing
that grid points are adapted to steep gradients dynamically, and(d) adapted grid att = 33 min. A
minimum resolution∆x=∆z=3.9 m is used only on a fraction of the domain whereθ has a sharp
change. As time proceeds, the adaptive grid follows dynamically the deformation of the flow.
The number of grid points isN = 7 808 at t = 0 min, which increases to25 344 at t = 33 min,
confirming that the model adds or deletes grid points so that small filamentary structure ofθ is
resolved.
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(c) (d)

FIG. 4. The result of dry thermal simulation att = 12 min. (a) potential temperatureθ, (b) vertical
velocityw, (c) span-wise vorticityωy, and(d) adapted grid. Red, blue, and yellow correspond to
positive, negative, and zero values of the respective field.
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FIG. 5. The region of steep buoyancy gradients moves verticallyupward as time proceeds, thereby
requiring more grid points and CPU time for resolving the buoyancy field.(a) Vertical profiles of
b along the centre-line of the domain att = 0, 4, 8, 12 min. (b) The number of grid pointsN
used at each time step and the elapsed CPU time at each time step is plotted as a function of the
simulation timet, where bothN and CPU time are normalized with respect to their corresponding
values att = 12 min. (c) The elapsed CPU time is compared withN , where the linear relationship
is depicted by the straight-line with a slope1.
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FIG. 6. Time series of the total,E = Ek + Ep (· · · ), kinetic,Ek (–), and potential,Ep (− −)
energy deviations relative to their initial values and normalized by the initial total energy. The
energy behaviour indicates that there is no damping of scales containing significant energy.
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t=1.0 min t=5.0 min t=15.0 min t=30.0 min

FIG. 7. The merging of a vortex pair at various times at two different Froude numbers: top
row, Fr=∞, bottom row, Fr=1.0. The domain extends24 km in both directions. Red and blue
contours represent counter- and clock-wise rotation respectively and yellow contours represent no
rotation.
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Fr=0.7 Fr=1.5 Fr=3.0 Fr=∞

FIG. 8. The merging of a vortex pair for various Froude numbers (Fr). Top row - vorticity field,
bottom row - adapted grids. Red and blue contours represent counter- and clock-wise rotation
respectively and yellow contours represent no rotation. Atlow Fr, opposite signed vorticity is cre-
ated, which slows down the merging process. The grid is dynamically adapted to the intermittent
vorticity field.
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FIG. 9. Top: vertical velocity att = 10.8h. A line (−−) that makes a22o angle with the horizontal
plane is also drawn, showing the direction of group velocity. Bottom: the adapted mesh. The
Witch of Agnesi topography is also shown.
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