AMAT3132 - Numerical Analysis, Winter 2010

Home work 1
(show all works)

Due Monday Jan 25, 2010 by $24: 00$ in the drop box\#40
Full marks $3 \times 10=30$

Instruction: (i) Please hand in the paper copy of the assignment into the box \#40 located next to Math general office in HH .
(ii) Please submit your matlab code in ONE executable file using the "submit assignment" utility. You MUST have one executable .m file for the entire assignment. (iii) The due date is the same for both the code or the paper copy.

1. (a) Develop an algorithm that converts a decimal (i.e. base-10) integer to a binary number. Submit the paper copy of your algorithm.
(b) Write a MATLAB function of the form
[return_value] = function_name(input....)
that implements your algorithm to convert a decimal number to a binary number.
(c) Convert and report the last 4-digits of your student number to binary form.
(d) Verify your developed code. Convert the following base-10 numbers to base-2 numbers and compare your results with Matlab's built-in function dec2bin().

base-10	base-2	dec2bin
4 -digits of ID		
191		
396		
3196		
9164		

2. (a) Consider the Taylor's series of the given function $f(x)$. Truncate the series to $f_{n}(x)$ retaining n terms for $n=1,2,3,4$. Use $f(x)=\ln (1+x)$ and
write a MATLAB function of the form

$$
[\text { return_value1, ...] = function_name(input1,) }
$$

to answer following problems.
(b) Find the truncation error of $f_{n}(x)$ for each n at $x=0.5$
(c) Find the relative truncation error of $f_{n}(x)$ for each n at $x=0.5$. How many significant digits are used for each approximation?
(d) Plot relative truncation errors in $f_{n}(x)$ for each n in the interval [1,4$]$ for various values of x in the range $0 \leq x \leq 1$. (you will have $4 f(x)$ versus x plots).
3. Please submit print outs of plots along with your paper copy and submit your code electronically.
(a) Consider the following equations:

$$
x(t)=3 \cos 2 t, y(t)=5 \sin 3 t, 0 \leq t \leq 2 \pi .
$$

Develop a MATLAB function to plot x versus t , y versus t , and y versus x . Submit print outs only for each plot.
(b) Consider the surface defined by $z=\left(x^{2}-y^{2}\right) e^{-x^{2}-y^{2}}$ for $-3 \leq x \leq 3$ and $-3 \leq y \leq 3$.
Develop a MATLAB function to plot the surface and submit the print out of the surface.

