A first order divided difference

For a given function $f(x)$ and two distinct points x_{0} and x_{1}, define

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

This is called the first order divided difference of $f(x)$.

By the Mean-value theorem,

$$
f\left(x_{1}\right)-f\left(x_{0}\right)=f^{\prime}(c)\left(x_{1}-x_{0}\right)
$$

for some c between x_{0} and x_{1}. Thus

$$
f\left[x_{0}, x_{1}\right]=f^{\prime}(c)
$$

and the divided difference is very much like the derivative, especially if x_{0} and x_{1} are quite close together. In fact,

$$
f^{\prime}\left(\frac{x_{1}+x_{0}}{2}\right) \approx f\left[x_{0}, x_{1}\right]
$$

is quite an accurate anproximation of the derivative

Second order divided difference

Given three distinct points x_{0}, x_{1}, and x_{2}, define

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}
$$

This is called the second order divided difference of $f(x)$.
We can show that $f\left[x_{0}, x_{1}, x_{2}\right]=\frac{1}{2} f^{\prime \prime}(c)$ for some c intermediate to x_{0}, x_{1}, and ${ }_{2}$. In fact,

$$
f^{\prime \prime}\left(x_{1}\right) \approx 2 f\left[x_{0}, x_{1}, x_{2}\right]
$$

in the case when nodes are evenly spaced, $x_{1}-x_{0}=x_{2}-x_{1}$.

Example

Consider the table

$$
\begin{array}{rrrrr}
x & 1 & 1.1 & 1.2 & 1.3 \\
\hline
\end{array} \begin{array}{rl}
1.4 \\
\cos x & 0.54030
\end{array} \begin{array}{rl}
0.45360 & 0.36236 \\
0.26750 & 0.16997 \\
\text { Let } x_{0}=1, x_{1}=1.1, & \text { and } x_{2}=1.2 \text {. Then } \\
f\left[x_{0}, x_{1}\right] & =\frac{0.45360-0.54030}{1.1-1}=-0.86700 \\
f\left[x_{1}, x_{2}\right] & =\frac{0.36236-0.45360}{1.1-1}=-0.91240 \\
f\left[x_{0}, x_{1}, x_{2}\right] & =\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x 1\right]}{x_{2}-x_{0}} \\
& =\frac{-0.91240-(-0.86700)}{1.2-1.0}=-0.22700
\end{array}
$$

For comparison, $f^{\prime}\left(\frac{x_{1}+x_{0}}{2}\right)=-\sin (1.05)=-0.86742$

General divided differences

Given $n+1$ distinct points x_{0}, \ldots, x_{n}, with $n \geq 2$, define

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

This is a recursive definition of the n-th order divided difference of $f(x)$, using divided differences of order n. We can also relate this to the derivative as follows:

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{1}{n!} f^{(n)}(c)
$$

for some c intermediate to the points $\left\{x_{0}, \ldots, x_{n}\right\}$.

Order of nodes

We see that

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{x_{0}-x_{1}}=f\left[x_{1}, x_{0}\right]
$$

The order of x_{0} and x_{1} does not matter. We have for 2 nd order divided difference:

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}\right]= & \frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}} \\
= & \frac{f\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
& +\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
& +\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

Order of nodes

Using this formula, we can show that

$$
f\left[x_{0}, x_{1}, x_{2}\right]=f\left[x_{0}, x_{2}, x_{1}\right]
$$

Mathematically,

$$
f\left[x_{0}, x_{1}, x_{2}\right]=f\left[x_{i_{0}}, x_{i_{1}}, x_{i_{2}}\right]
$$

for any permutation $\left(i_{0}, i_{1}, i_{2}\right)$ of $(0,1,2)$.

Newton's interpolating polynomial

Recall that the general interpolation problem: find a polynomial $P_{n}(x)$ of degree n for which

$$
P_{n}\left(x_{i}\right)=y_{i}, \quad i=0,1, \ldots, n
$$

with given data points

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where $\left\{x_{0}, \ldots, x_{n}\right\}$ distinct points.

Newton's interpolating polynomial

Let the data values be generated from a function $f(x)$:

$$
y_{i}=f\left(x_{i}\right), \quad i=0,1, \ldots, n
$$

Using divided differences $f\left[x_{0}, x_{1}\right], f\left[x_{0}, x_{1}, x_{2}\right], \ldots, f\left[x_{0}, \ldots, x_{n}\right]$ we can write the interpolation polynomials $P_{1}(x), P_{2}(x), \ldots, P_{n}(x)$ in a way that is simple to compute.

$$
\begin{aligned}
P_{1}(x)= & f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right) \\
P_{2}(x)= & f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
= & P_{1}(x)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)
\end{aligned}
$$

Newton's interpolating polynomial

For the case of general n-th degree polynomial, we have

$$
\begin{aligned}
P_{n}(x)= & f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\ldots \\
& +f\left[x_{0}, \ldots, x_{n}\right]\left(x-x_{0}\right) \ldots\left(x-x_{n-1}\right)
\end{aligned}
$$

Therefore

$$
P_{n}(x)=P_{n-1}(x)+f\left[x_{0}, \ldots, x_{n}\right]\left(x-x_{0}\right) \ldots\left(x-x_{n-1}\right)
$$

in which $P_{n-1}(x)$ interpolates $f(x)$ at points in $\left\{x_{0}, \ldots, x_{n-1}\right\}$

Example

Consider the table

x	1	1.1	1.2	1.3	1.4
$\cos x$	0.54030	0.45360	0.36236	0.26750	0.16997

Define

\[

\]

These were computed using the recursive definition

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

Then

$$
\begin{aligned}
& P_{1}(x)=0.5403-0.8670(x-1) \\
& P_{2}(x)=P_{1}(x)-0.2270(x-1)(x-1.1) \\
& P_{3}(x)=P_{2}(x)+0.1533(x-1)(x-1.1)(x-1.2) \\
& P_{4}(x)=P_{3}(x)+0.0125(x-1)(x-1.1)(x-1.2)(x-1.3)
\end{aligned}
$$

We can now estimate $\cos (1.05)$ using various order polynomials and the results are tabulated below:

$$
\begin{array}{rrrrr}
n & 1 & 2 & 3 & 4 \\
P_{n}(1.05) & 0.49695 & 0.49752 & 0.49758 & 0.49757 \\
\text { Error } & 6.20 \times 10^{-4} & 5.0 \times 10^{-5} & -1.0 \times 10^{-5} & 0.0
\end{array}
$$

Error of interpolation

Let $P_{n}(x)$ be a n-th degree interpolating polynomial that agree with $f(x)$ on $n+1$ distinct points. Let the error $E(x)$ be defined as

$$
E(x)=f(x)-P_{n}(x)
$$

Since $E\left(x_{i}\right)=0$ for $i=0, \ldots, n$, we can write

$$
E(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) g(x)
$$

where the function $g(x)$ has to be determined.

We see that

$$
f(x)-P_{n}(x)-\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) g(x)=0
$$

Error of interpolation

Let us introduce a new function

$$
W(t)=f(t)-P_{n}(t)-\left(t-x_{0}\right)\left(t-x_{1}\right) \ldots\left(t-x_{n}\right) g(x)
$$

Note that $W(t)=0$ at $t=x, x_{0}, x_{1}, \ldots, x_{n}$.
Therefore, $W(t)$ has $n+2$ zeros. We assume that $W(t)$ is continuous and differentiable and use mean value theorem. Therefore, $W^{\prime}(c)=0$ if c is a number intermediate in $\left\{x_{0}, x_{1}, \ldots, x_{n}, x\right\}$.

Error of interpolation

Using mean value theorem repeatedly, we get

$$
W^{n+1}(c)=0=f^{(n+1)}(c)-(n+1)!g(x)
$$

for c intermediate in $\left\{x_{0}, x_{n}, x\right\}$.
Thus

$$
g(x)=\frac{f^{(n+1)}(c)}{(n+1)!}
$$

Hence

$$
E(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) \frac{f^{(n+1)}(c)}{(n+1)!}
$$

Error of interpolation

Example: If the function $f(x)=\sin x$ is approximated by a polynomial of degree 9 that interpolates $f(x)$ at ten points in the interval $[0,1]$, estimate the interpolation error.

