A first order divided difference

For a given function f(x) and two distinct points x_0 and x_1 , define

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

This is called the first order divided difference of f(x).

By the Mean-value theorem,

$$f(x_1) - f(x_0) = f'(c)(x_1 - x_0)$$

for some *c* between x_0 and x_1 . Thus

$$f[x_0,x_1]=f'(c)$$

and the divided difference is very much like the derivative, especially if x_0 and x_1 are quite close together. In fact,

$$f'\left(\frac{x_1+x_0}{2}\right)\approx f[x_0,x_1]$$

is quite an accurate approximation of the derivative AMATH 3132: Numerical analysis I Mem

Memorial University of Newfoundland

Second order divided difference

Given three distinct points x_0 , x_1 , and x_2 , define

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

This is called the second order divided difference of f(x).

We can show that $f[x_0, x_1, x_2] = \frac{1}{2}f''(c)$ for some *c* intermediate to x_0 , x_1 , and z_2 . In fact,

$$f''(x_1)\approx 2f[x_0,x_1,x_2]$$

in the case when nodes are evenly spaced, $x_1 - x_0 = x_2 - x_1$.

Introduction	Linear sy	stem	Nonlinear equation			Interpolation			
Example									
Consider t	the table								
	x 1	1.1	1.2	1.3	1.4				
COS	x 0.54030	0.45360	0.36236	0.26750	0.16997				
Let $x_0 = 1$, $x_1 = 1.1$, and $x_2 = 1.2$. Then									
$f[x_0, x_1] = \frac{0.45360 - 0.54030}{1.1 - 1} = -0.86700$									
$f[x_1, x_2] = \frac{0.36236 - 0.45360}{1.1 - 1} = -0.91240$									
$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ = $\frac{-0.91240 - (-0.86700)}{1.2 - 1.0} = -0.22700$									
For comparison, $f'\left(\frac{x_1+x_0}{2}\right) = -\sin(1.05) = -0.86742$									
AMATH 3132: Numeri	cal analysis I			Mem	orial University of	Newfoundland			

General divided differences

Given n + 1 distinct points x_0, \ldots, x_n , with $n \ge 2$, define

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

This is a recursive definition of the *n*-th order divided difference of f(x), using divided differences of order *n*. We can also relate this to the derivative as follows:

$$f[x_0,\ldots,x_n]=\frac{1}{n!}f^{(n)}(c)$$

for some *c* intermediate to the points $\{x_0, \ldots, x_n\}$.

Order of nodes

We see that

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = f[x_1, x_0]$$

The order of x_0 and x_1 does not matter. We have for 2nd order divided difference:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

= $\frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)}$
+ $\frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)}$
+ $\frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)}$

Order of nodes

Using this formula, we can show that

$$f[x_0, x_1, x_2] = f[x_0, x_2, x_1]$$

Mathematically,

$$f[x_0, x_1, x_2] = f[x_{i_0}, x_{i_1}, x_{i_2}]$$

for any permutation (i_0, i_1, i_2) of (0, 1, 2).

Newton's interpolating polynomial

Recall that the general interpolation problem: find a polynomial $P_n(x)$ of degree *n* for which

$$P_n(x_i) = y_i, \quad i = 0, 1, \dots, n$$

with given data points

$$(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n),$$

where $\{x_0, \ldots, x_n\}$ distinct points.

Newton's interpolating polynomial

Let the data values be generated from a function f(x):

$$y_i = f(x_i), \quad i = 0, 1, \ldots, n$$

Using divided differences $f[x_0, x_1], f[x_0, x_1, x_2], \ldots, f[x_0, \ldots, x_n]$ we can write the interpolation polynomials $P_1(x), P_2(x), \ldots, P_n(x)$ in a way that is simple to compute.

$$P_1(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$P_2(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$= P_1(x) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

Newton's interpolating polynomial

For the case of general *n*-th degree polynomial, we have

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

Therefore

$$P_n(x) = P_{n-1}(x) + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

in which $P_{n-1}(x)$ interpolates f(x) at points in $\{x_0, \ldots, x_{n-1}\}$

Introduction		Linear system		Nonlir	near equation		Interpolation				
Example	9										
Consider the table											
	x	1	1.1	1.2	1.3	1.4					
C	os x	0.54030	0.45360	0.36236	0.26750	0.16997					
Define											
$D^k f(x_i) = f[x_i, \ldots, x_{i+k}]$											
						$D^4f(x_i)$					
0	1.0	0.54030	-0.8670	-0.2270	0.1533	0.0125	-				
1	1.1	0.45360	-0.9124	-0.1810	0.1583						
2	1.2	0.36236	-0.9486	-0.1335							
3	1.3	0.26750	-0.9753								
4	1.4	0.16997									
These were computed using the recursive definition											
$f[x_0,,x_n] = \frac{f[x_1,,x_n] - f[x_0,,x_{n-1}]}{x_n - x_0}$											

AMATH 3132: Numerical analysis I

Then

$$P_1(x) = 0.5403 - 0.8670(x - 1)$$

$$P_2(x) = P_1(x) - 0.2270(x - 1)(x - 1.1)$$

$$P_3(x) = P_2(x) + 0.1533(x - 1)(x - 1.1)(x - 1.2)$$

$$P_4(x) = P_3(x) + 0.0125(x - 1)(x - 1.1)(x - 1.2)(x - 1.3)$$

We can now estimate cos(1.05) using various order polynomials and the results are tabulated below:

 $\begin{array}{cccccccc} n & 1 & 2 & 3 & 4 \\ P_n(1.05) & 0.49695 & 0.49752 & 0.49758 & 0.49757 \\ \text{Error} & 6.20 \times 10^{-4} & 5.0 \times 10^{-5} & -1.0 \times 10^{-5} & 0.0 \end{array}$

Let $P_n(x)$ be a *n*-th degree interpolating polynomial that agree with f(x) on n+1 distinct points. Let the error E(x) be defined as

 $E(x) = f(x) - P_n(x)$

Since $E(x_i) = 0$ for i = 0, ..., n, we can write

$$\mathsf{E}(x) = (x - x_0)(x - x_1) \dots (x - x_n)g(x),$$

where the function g(x) has to be determined.

We see that

$$f(x) - P_n(x) - (x - x_0)(x - x_1) \dots (x - x_n)g(x) = 0$$

Let us introduce a new function

$$W(t) = f(t) - P_n(t) - (t - x_0)(t - x_1) \dots (t - x_n)g(x)$$

Note that W(t) = 0 at $t = x, x_0, x_1, \ldots, x_n$.

Therefore, W(t) has n + 2 zeros. We assume that W(t) is continuous and differentiable and use mean value theorem. Therefore, W'(c) = 0 if c is a number intermediate in $\{x_0, x_1, \ldots, x_n, x\}$.

Using mean value theorem repeatedly, we get

$$W^{n+1}(c) = 0 = f^{(n+1)}(c) - (n+1)!g(x)$$

for c intermediate in $\{x_0, x_n, x\}$.

Thus

$$g(x) = rac{f^{(n+1)}(c)}{(n+1)!}$$

Hence

$$E(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(c)}{(n+1)!}$$

AMATH 3132: Numerical analysis I

Memorial University of Newfoundland

Example: If the function $f(x) = \sin x$ is approximated by a polynomial of degree 9 that interpolates f(x) at ten points in the interval [0, 1], estimate the interpolation error.