Interpolation

Interpolation is the process of estimating an intermediate value from a set of discrete or tabulated values.

Suppose we have the following tabulated values:

y	y_{0}	y_{1}	$y_{2} ? ?$	y_{3}	y_{4}	y_{5}
x	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}

How do we determine a missing value e.g. y_{2} ?
Let us consider a polynomial $p(x)$ that fits to the tabulated values such that $y_{i}=p\left(x_{i}\right)$. Intermediate values of y can be estimated by evaluating this polynomial.

Interpolation

Example:

Develop an interpolation formula for the function $e^{0.5 x}$ using the values at $x_{0}=0$ and $x_{1}=2$, and estimate the value of $e^{0.5 x}$ at $x=1$.

Solution:
Let $y=f(x):=e^{0.5 x}$.
A simple approach would be to connect points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ using a straight line $y=m x+c$.

Interpolation

We can evaluate y at $x=1$, which is $y=m+c$ and this is the estimate of $e^{0.5 x}$ at $x=1$.

To find m and c, we use tabulated values to get the following:

$$
\begin{aligned}
& y_{0}=m x_{0}+c \\
& y_{1}=m x_{1}+c
\end{aligned}
$$

We solve this linear system using a method of our choice - such as - Gauss elimination, Jacobi etc.

Interpolation

Using Gauss elimination, we get

$$
c=\frac{x_{0} y_{1}-x_{1} y_{0}}{x_{0}-x_{1}} \quad m=\frac{y_{0}-y_{1}}{x_{0}-x_{1}}
$$

Therefore,

$$
y=1.0+0.8591 x
$$

is the interpolating polynomial.
Evaluating this polynomial at $x=1$, we get $y=1.8591$.
Using a calculator, we get the exact value is 1.6487 . The error of this linear interpolation is 12.7626%.

What is the degree of the polynomial?

Interpolation: how to find the polynomial?

We can re-write the straight line such that

$$
y=a_{0}+a_{1}\left(x-x_{0}\right)
$$

It is easy to see that $a_{0}=y_{0}$ if $x=x_{0} \quad$ and $a_{1}\left(x_{1}-x_{0}\right)=y_{1}-a_{0}$ if $x=x_{1} \quad$ or $a_{0}=1.0$ and $a_{1}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=0.8591$.

Similarly, we can write a polynomial of degree 2

$$
y(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

and a polynomial of degree 3

$$
y(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+a_{3}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

Note that the number of tabulated data $=$ the number of constants for each polynomial.

Interpolation

Find a general interpolating polynomial of degree n and discuss the limitations.

Let us suppose that we have a data set $\left\{\left(x_{i}, y_{i}\right)\right\}$ such that $y_{i}=f\left(x_{i}\right)$ for $i=0, \ldots, n$.

Let the polynomial be of the form

$$
f(x)=y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

To agree with the data set, the polynomial must pass through the point $\left(x_{i}, y_{i}\right)$ for $i=0,1, \ldots, n$. Thus

$$
y_{i}=a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\cdots+a_{n-1} x_{i}^{n-1}+a_{n} x_{i}^{n}
$$

Interpolation

These equations can be expressed in matrix form as

$$
\mathbf{B a}=\mathbf{y}
$$

where the Vandermonde matrix is

$$
\begin{gathered}
\mathbf{B}=\left[\begin{array}{llllllll}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} & \cdot & \cdot & \cdot & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \cdot & \cdot & \cdot & x_{1}^{n} \\
\vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \cdot & \cdot & \cdot & x_{n}^{n}
\end{array}\right] \\
\mathbf{a}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
\end{gathered}
$$

Inthumlntinn

The Vandermonde matrix is given by

$$
\mathbf{B a}=\mathbf{y},
$$

where $\mathbf{B}=\left[x_{i}^{j}\right]$ for $i, j=0, \ldots, n, \mathbf{a}=\left[a_{0}, \ldots, a_{n}\right]^{T}$, and $\mathbf{y}=$ $\left[y_{0}, \ldots, y_{n}\right]^{T}$.

1. Show that

$$
\operatorname{det}(\mathbf{B})=\Pi_{0 \leq j<i \leq n}\left(x_{i}-x_{j}\right)
$$

2. Let $y_{i}=f\left(x_{i}\right)$ for $i=0, \ldots, n$ represent $n+1$ distinct data set. Show that there is a unique interpolating polynomial $p(x)$ of degree $\leq n$ such that $p\left(x_{i}\right)=y_{i}$.

Interpolation: remarks

- The system of equations $\mathbf{B a}=\mathbf{y}$ can be solved using either a direct method (e.g. Gauss elimination) or an iterative method (e.g. Jacobi).
- A solution exists if and only if the rank of the augmented matrix $[\mathbf{B} \mid \mathbf{y}]$ is equal to that of the coefficient matrix $[\mathbf{B}]$.
- The solution will be unique if the rank is n. If rank $<n$, then one or more equations are redundant.
- However, note that the system is sensitive to the condition number of the matrix \mathbf{B}, and hence determining the polynomial such that $\mathbf{a}=(\mathbf{B})^{-1} \mathbf{y}$ is not an efficient approach.

Fitting a polynomial to a data set

Suppose we have the following tabulated

x	$y=f(x)$
3.2	22.0

We get

$$
\begin{array}{ll}
x=3.2 & a_{0}+a_{1}(3.2)+a_{2}(3.2)^{2}+a_{3}(3.2)^{3}=22.0 \\
x=2.7 & a_{0}+a_{1}(2.7)+a_{2}(2.7)^{2}+a_{3}(2.7)^{3}=17.8 \\
x=1.0 & a_{0}+a_{1}(1.0)+a_{2}(1.0)^{2}+a_{3}(1.0)^{3}=14.2 \\
x=4.8 & a_{0}+a_{1}(4.8)+a_{2}(4.8)^{2}+a_{3}(4.8)^{3}=38.3
\end{array}
$$

Solving these equations, we get $a_{0}=24.3499, a_{1}=-16.1177$, $a_{2}=6.4952, a_{3}=-0.5275$. Hence the polynomial is

$$
24.3499-16.1177 x+6.4952 x^{2}-0.5275 x^{3}
$$

The derivation of Lagrange polynomial

The Lagrange interpolation does not require the solution of a linear system. Let us now derive a quadratic Lagrange interpolation formula.

Consider a quadratic polynomial that passes through three points $\left(x_{i}, y_{i}\right), i=0,1,2$ and express this polynomial in the form $I(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right)+a_{1}\left(x-x_{0}\right)\left(x-x_{2}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)$,
where a_{0}, a_{1}, and a_{2} are constants that have to be determined such that $I(x)$ passes through given data points $\left(x_{i}, y_{i}\right), i=0,1,2$ such that $I\left(x_{i}\right)=y_{i}$.

The derivation of Lagrange polynomial

Therefore, we get

$$
\begin{aligned}
y_{0} & =a_{0}\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \\
y_{1} & =a_{1}\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \\
y_{2} & =a_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
a_{0} & =\frac{y_{0}}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
a_{1} & =\frac{y_{1}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
a_{2} & =\frac{y_{2}}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

Using values of a_{0}, a_{1}, and a_{2} in $I(x)$, we get,

$$
\begin{aligned}
I(x) & =y_{0} \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
+y_{1} \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} & +y_{2} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

We can also write

$$
I(x)=\sum_{i=0}^{2} y_{i} L_{i}(x)
$$

where

$$
L_{i}(x)=\prod_{j=0, j \neq i}^{2}\left[\frac{x-x_{j}}{x_{i}-x_{j}}\right], \quad i=0,1,2
$$

Example

Write out the Lagrangian polynomial from this table:

$$
\begin{array}{rrrr}
x & 2.1 & 4.1 & 7.1 \\
\hline y & -12.4 & 7.3 & 10.1
\end{array}
$$

Solution: Let

$$
I(x)=\sum_{i=0}^{n} y_{i} L_{i}(x)
$$

where

$$
L_{i}(x)=\prod_{j=0, j \neq i}^{2}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right), \quad i=0,1,2
$$

Example

Therefore

$$
\begin{aligned}
L(x)= & -12.4 \frac{(x-4.1)(x-7.1)}{(2.1-4.1)(2.1-7.1)} \\
+ & 7.3 \frac{(x-2.1)(x-7.1)}{(4.1-2.1)(4.1-7.1)} \\
& +10.1 \frac{(x-2.1)(x-4.1)}{(7.1-2.1)(7.1-4.1)} \\
= & -1.7833 x^{2}+20.9067 x-48.4395
\end{aligned}
$$

Example Verify that $L(x)$ reproduces the y values for each x values.
Solution We find that $L(2.1)=-12.4$
$L(4.1)=7.3$
$L(7.1)=10.1$
Example Using $L(x)$ estimate y at $x=3$ and at $x=8$.
Solution We find that $L(3)=-1.7695$ and
$L(8)=4.6805$

Example

Write out the cubic Lagrangian polynomial from this table:

$$
\begin{array}{lllll}
x & 2 & 4 & 3 & 8 \\
\hline y & 1 & 3 & 5 & 9
\end{array}
$$

Solution: Let

$$
I(x)=\sum_{i=0}^{n} y_{i} L_{i}(x)
$$

where

$$
\begin{gathered}
L_{i}(x)=\prod_{j=0, j \neq i}^{2}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right), \quad i=0,1,2 \\
L(x)=1 \frac{(x-4)(x-3)(x-8)}{(2-4)(2-3)(2-8)} \\
+3 \frac{(x-2)(x-3)(x-8)}{(4-2)(4-3)(4-8)}+5 \frac{(x-2)(x-4)(x-8)}{(3-2)(3-4)(3-8)}
\end{gathered}
$$

$$
(x-2)(x-4)(x-3) \quad 37,171,1051
$$

