Newton's method

Let x_{0} be an approximation to the solution of $f(x)=0$ and h be the error such that $f\left(x_{0}+h\right)=0$.

We aim to approximate h and set $x_{1}=x_{0}+h$.

Taylor's series expansion gives:

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\text { h.o.t.. }
$$

Then

$$
f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right) \approx 0
$$

Newton's method

We get

$$
h \approx-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

We set

$$
x_{1}=x_{0}+h=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Repeating the process, we write

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Convergence of the Newton's method

The Newton's method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

can be treated as a fixed point iteration

$$
x_{n+1}=g\left(x_{n}\right)
$$

if we define

$$
g\left(x_{n}\right)=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Convergence of the Newton's method

Let

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

Therefore

$$
g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}
$$

Let x^{*} be the true solution such that $f\left(x^{*}\right)=0$. We can show that

$$
g^{\prime}\left(x^{*}\right)=\frac{f\left(x^{*}\right) f^{\prime \prime}\left(x^{*}\right)}{\left[f^{\prime}\left(x^{*}\right)\right]^{2}}=0
$$

Convergence of the Newton's method

The Taylor series expansion of $g\left(x_{n}\right)$ implies

$$
g\left(x_{n}\right)=g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x^{*}-x_{n}\right)+g^{\prime \prime}(\xi)\left(x^{*}-x_{n}\right)^{2} / 2
$$

Let $e_{n}=x^{*}-x_{n}$ be the error. Therefore, error after n-th iteration is

$$
\begin{gathered}
e_{n+1}=x^{*}-x_{n+1}=g\left(x^{*}\right)-g\left(x_{n}\right)=-g^{\prime \prime}(\xi)\left(e_{n}\right)^{2} / 2 \\
\left|e_{n+1}\right| \leq\left.\left|g^{\prime \prime}(\xi)\right| e_{n}\right|^{2}
\end{gathered}
$$

The rate of convergence for Newton's method is quadratic.

Examples

Example: Let $f(x)=4 x^{3}-1-e^{x^{2} / 2}$
Q. Find intervals for two roots of $f(x)$.

We calculate $f(0)=-2, f(1)=1.3513, f(2)=23.611$, $f(3)=16.983, f(4)=-2726$.

We expect one root in the interval $[0,1]$ and another root in the interval [3, 4]

Examples

Q. Use Newton's method to find the root in $[0,1]$

Solution: $f(x)=4 x^{3}-1-e^{x^{2} / 2}$
$f^{\prime}(x)=12 x^{2}-x e^{x^{2} / 2}$.
Let $x_{0}=0.5$. Then

$$
f\left(x_{0}\right)=-1.6331, f^{\prime}\left(x_{0}\right)=2.4334, h=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=0.6711
$$

Therefore $x_{1}:=x_{0}+h=1.1711$.

$$
f\left(x_{1}\right)=3.4397, f^{\prime}\left(x_{1}\right)=14.1335, h=-0.2433
$$

Therefore $x_{2}:=x_{1}+h=0.9277$.

$$
f\left(x_{2}\right)=0.6563, f^{\prime}\left(x_{2}\right)=8.9021, h=-0.0073
$$

Therefore $x_{3}:=x_{2}+h=0.8540$.

Examples

Q. Since the convergence of Newton's method depends on the starting solution, can you propose a better starting solution.

Solution: From the previous calculation, we see that the desired root is in the interval $[0,1]$.

Using Bisection method, we can assume that the desired root is $(0+1) / 2=0.5$.

We see that $f(0.5) \cdot f(1)<0$.
We can pick an initial guess in the interval $[0.5,1]$.
Using bisection method $x_{0}=(0.5+1) / 2=0.75$ would be a better choice for starting solution.

Examples

Q. Can you find the error bound for the improved initial guess in the interval $[0,1]$.

Solution: For the improved initial guess, we have used 2 steps of bisection method.

Therefore, the error bound for the improved initial guess is

$$
(b-a) / 2^{n}=\frac{1}{2^{2}}=0.25
$$

Examples

Q. We see that 3 iterations are necessary for Newton's method to get an error $\mathcal{O}\left(10^{-1}\right)$. How many iterations will require to get similar accuracy if the Bisection method was used?

Solution: We solve $2^{-n}(b-a)=10^{-2}$.

$$
n=\frac{\ln (b-a)+2 \ln (5)}{\ln (2)}+2 \sim 7
$$

About 7 or more iterations are required, if the Bisection method were used. For this example, the Newton's method improves the speed by a factor of about $2-3(\sim 7 / 3)$ compared to the Bisection method.

Example

- Let $f(x)=2 \sin (x)-e^{x} / 4-1$ is zero for two values near $x=-5$.

1. Propose two initial intervals so that Bisection method would converge to the solution of $f(x)=0$.
2. How many iterations are required to agree an error bound 10^{-6} ?

Example

Solution:
$f(-7)=-2.3142, f(-5)=0.9162$, and $f(-3)=-1.2947$
We must have one solution in $[-7,-5]$ and the other in $[-5,-3]$.
To agree an error bound 10^{-6}, we must solve

$$
\frac{b-a}{2^{n}}=10^{-6}
$$

Example

$$
\begin{gathered}
\ln (b-a)-n \ln 2=-6 \ln (10) \\
n \ln 2=\ln (b-a)+6 \ln 5+6 \ln 2 \\
n=\frac{\ln (b-a)+6 \ln 5}{\ln 2}+6
\end{gathered}
$$

For the interval $[-5,-3]$ we need about 21 iterations.
For the interval $[-7,-5]$ we also need about 21 iterations.

Example

- Let $f(x)=(x-0.3)(x-0.5)$. Clearly $f(x)=0$ has two roots $x=0.3$ and $x=0.5$.

1. If you take an initial interval $[0.1,0.6]$ for bisection method, which root do you expect to converge. Explain your answer.
2. Determine two good starting intervals so that bisection method converges to the exact root.
3. Let $[0,0.49]$ be the starting interval. Which root will the bisection method converge to?

Solution

The interval $[0.1,0.6]$ is not suitable for bisection method because $f(x)$ does not change sign in this interval.

By inspection, $f(0.2)=0.03, f(0.4)=-0.01$, and $f(0.6)=0.03$. So $[0.2,0.4]$ and $[0.4,0.6]$ are good choices.

The starting interval $[0,0.49]$ is expected to converge to $x^{*}=0.3$

