Newton's method

Let x_0 be an approximation to the solution of f(x) = 0 and h be the error such that $f(x_0 + h) = 0$.

We aim to approximate *h* and set $x_1 = x_0 + h$.

Taylor's series expansion gives:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h.o.t.$$

Then

$$f(x_0) + hf'(x_0) \approx 0$$

AMATH 3132: Numerical analysis I

Newton's method

We get

$$h\approx -rac{f(x_0)}{f'(x_0)},$$

We set

$$x_1 = x_0 + h = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Repeating the process, we write

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

AMATH 3132: Numerical analysis I

Convergence of the Newton's method

The Newton's method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

can be treated as a fixed point iteration

$$x_{n+1} = g(x_n)$$

if we define

$$g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}.$$

AMATH 3132: Numerical analysis I

Memorial University of Newfoundland

Convergence of the Newton's method

Let

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Therefore

$$g'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}.$$

Let x^* be the true solution such that $f(x^*) = 0$. We can show that

$$g'(x^*) = \frac{f(x^*)f''(x^*)}{[f'(x^*)]^2} = 0.$$

AMATH 3132: Numerical analysis I

Convergence of the Newton's method

The Taylor series expansion of $g(x_n)$ implies

$$g(x_n) = g(x^*) + \underline{g'(x^*)(x^* - x_n)} + g''(\xi)(x^* - x_n)^2/2$$

Let $e_n = x^* - x_n$ be the error. Therefore, error after *n*-th iteration is

$$e_{n+1} = x^* - x_{n+1} = g(x^*) - g(x_n) = -g''(\xi)(e_n)^2/2$$

$$|e_{n+1}| \leq |g''(\xi)|e_n|^2.$$

The rate of convergence for Newton's method is quadratic.

Example: Let
$$f(x) = 4x^3 - 1 - e^{x^2/2}$$

Q. Find intervals for two roots of f(x).

We calculate f(0) = -2, f(1) = 1.3513, f(2) = 23.611, f(3) = 16.983, f(4) = -2726.

We expect one root in the interval [0,1] and another root in the interval [3,4]

Introduction	Linear system	Nonlinear equation	Interpolation	
Example	S			
Q. Use Newton's method to find the root in $[0,1]$				
Solution	: $f(x) = 4x^3 - 1 - e^{x^2/2}$	/2		
f'(x) =	$12x^2 - xe^{x^2/2}$.			
Let $x_0 =$	= 0.5. Then			
f(x	$f_{0}) = -1.6331, f'(x_{0}) =$	2.4334, $h = -\frac{f(x_0)}{f'(x_0)} = 0.6$	5711	
Theref	Fore $x_1 := x_0 + h = 1.17$	11.		
	$f(x_1) = 3.4397, f'(x_1)$	= 14.1335, h = -0.2433		
Theref	Fore $x_2 := x_1 + h = 0.92$	77.		
	$f(x_2) = 0.6563, f'(x_2)$	$) = 8.9021, \ h = -0.0073$		
Therefor	re $x_3 := x_2 + h = 0.8540$).		
AMATH 3132: Num	erical analysis l	Memorial Unive	rsity of Newfoundland	

Q. Since the convergence of Newton's method depends on the starting solution, can you propose a better starting solution.

Solution: From the previous calculation, we see that the desired root is in the interval [0, 1].

Using Bisection method, we can assume that the desired root is (0+1)/2 = 0.5.

We see that $f(0.5) \cdot f(1) < 0$.

We can pick an initial guess in the interval [0.5, 1].

Using bisection method $x_0 = (0.5 + 1)/2 = 0.75$ would be a better choice for starting solution.

Q. Can you find the error bound for the improved initial guess in the interval [0, 1].

Solution: For the improved initial guess, we have used 2 steps of bisection method.

Therefore, the error bound for the improved initial guess is

$$(b-a)/2^n = \frac{1}{2^2} = 0.25.$$

Q. We see that 3 iterations are necessary for Newton's method to get an error $\mathcal{O}(10^{-1})$. How many iterations will require to get similar accuracy if the Bisection method was used?

Solution: We solve $2^{-n}(b-a) = 10^{-2}$.

$$n = \frac{\ln(b-a) + 2\ln(5)}{\ln(2)} + 2 \sim 7$$

About 7 or more iterations are required, if the Bisection method were used. For this example, the Newton's method improves the speed by a factor of about 2-3 ($\sim 7/3$) compared to the Bisection method.

- Let $f(x) = 2\sin(x) e^{x}/4 1$ is zero for two values near x = -5.
 - 1. Propose two initial intervals so that Bisection method would converge to the solution of f(x) = 0.
 - 2. How many iterations are required to agree an error bound 10^{-6} ?

Introduction	Linear system	Nonlinear equation	Interpolation
Example			
Solution:			
f(-7) = -2	.3142, $f(-5) = 0.9$	162, and $f(-3) = -1.294$	17

We must have one solution in [-7, -5] and the other in [-5, -3].

To agree an error bound 10^{-6} , we must solve

$$\frac{b-a}{2^n}=10^{-6}$$

Introduction	Linear system	Nonlinear equation	Interpolation
Example			
	$\ln(b-a)-b$	$n\ln 2 = -6\ln(10)$	
	$n \ln 2 = \ln(b -$	$(-a) + 6 \ln 5 + 6 \ln 2$	
	$n=\frac{\ln(b-b)}{\ln(b-b)}$	$\frac{(-a)+6\ln 5}{\ln 2}+6$	
For the inter	∙val [−5, −3] we r	need about 21 iterations.	
For the interv	al $\left[-7,-5 ight]$ we also	so need about 21 iterations.	

- ▶ Let f(x) = (x 0.3)(x 0.5). Clearly f(x) = 0 has two roots x = 0.3 and x = 0.5.
 - 1. If you take an initial interval [0.1, 0.6] for bisection method, which root do you expect to converge. Explain your answer.
 - 2. Determine two good starting intervals so that bisection method converges to the exact root.
 - **3.** Let [0, 0.49] be the starting interval. Which root will the bisection method converge to?

Solution

The interval [0.1, 0.6] is not suitable for bisection method because f(x) does not change sign in this interval.

By inspection, f(0.2) = 0.03, f(0.4) = -0.01, and f(0.6) = 0.03. So [0.2, 0.4] and [0.4, 0.6] are good choices.

The starting interval [0, 0.49] is expected to converge to $x^* = 0.3$