
Kinds of error and computer arithmetic Convergence and efficiency Solution of linear equations Solution of nonlinear equations

Iterative method

Convergence criterion:

Theorem: Let A be a square matrix. Then

lim
k→∞

Akx = 0 for every x ∈ Rn

is equivalent to,
ρ(A) < 1

where ρ(A) is the spectral radius.
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Iterative method

Convergence criterion:

Theorem: The sequence {xk}∞k=0 that is defined by

xk+1 = Txk + c , ∀k ≥ 0

converges to the solution of

x = Tx + c

if and only if ρ(T ) < 1.

This is known as fixed point iteration.
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Proof: Let ρ(T ) < 1.

xk+1 = Txk + c

= T (Txk−1 + c) + c

= . . . . . .

= T k+1x0 + (T k + · · · + M + I )c

= T k+1x0 +
k∑

j=0

T kc

lim
k→∞

xk = lim
k→∞

T k+1x0 +
∞∑

j=0

T kc
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Since ρ(T ) < 1, then limk→∞ T kx0 = 0 for every x0 and

∞∑

j=0

T k = (I − T )−1.

Therefore
lim

k→∞
xk = (I −M−1)c = x .

This implies that
x = Tx + c .

To prove the converse, let z be an arbitrary, and x be the unique
solution to x = Tx + c .
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Let xk+1 = Txk + c for k ≥ 0 and the sequence {xk}∞k=0 converge
to x . Define x0 = x − z .

x − xk = Tx + c − (Txk−1 + c)

= T (x − xk−1)

= T (T (x − xk−2))

=
...

= T k(x − x0)

= T kz

lim
k→0

T kz = lim
k→0

(x − xk) = 0

Since this is true for any z ∈ Rn, we must have ρ(T ) < 1
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Direct method

Problem:

Find the number of arithmetic operations for forward Gauss
elimination process.

Solution: At i -th column, n − i division is required to reduce all
elements below the diagonal.

The total # of divisions is
n−1∑

i=1

(n − i) = n2/2− n/2.
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Ignoring leading zero elements, n− i + 1 multiplications are
required at n − i rows of the augmented matrix.

The total # of multiplications are
n−1∑

i=1

(n − i + 1)(n − i) = n3/3− n/3.

The # of subtractions are same as that of multiplications.

The total # of operations is 2n3/3 + n2/2− 7n/6 = O(n3).
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Direct method

Problem:

Find the number of arithmetic operations for back substitution in
Gauss elimination process.

Solution:

At i -th row, n − i multiplications are required.

Such multiplications are required at (n − 1) rows (except the last
one).

The total # of multiplications:
n−1∑

i=1

i = n2/2− n/2
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Direct method

The total # of divisions: n.

The # of subtraction is same as the number of multiplications.

The total # of operations for back substitution is n2.

Exercise: Determine the computational complexity of the Gauss
elimination process.
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Sparse matrix:

A square matrix A = [aij ] is said to be tridiagonal if

aij = 0

for all pairs (i , j) that satisfies |i − j | > 1.
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Sparse matrix:

A tri-diagonal system may be written as:

d1x1 + c1x2 = b1

aixi−1 + dixi + cixi+1 = bi ; 2 ≤ i ≤ n − 1

anxn−1 + dnxn = bn

The coefficient matrix A has all elements zero other than 3 main
diagonal elements.
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Direct method

Sparse matrix:

The tri-diagonal matrix is:

A =




d1 c1 0 0 0 0 0
a2 d2 c2 0 0 0 0
0 a3 d3 c3 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 an dn




Therefore, it is not necessary to store and calculate all elements.

Considering this fact, we can reduce the cost of direct solver.
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Thomas algorithm:

Let A = LU be the LU decomposition of the tri-diagonal matrix A,
where

L =




1
l21 1

l32 1

ln−1,n 1




U =




u11 u12

u22 u23

u33 u34

unn



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Thomas algorithm:

The elements lij and uij are determined as

u11 = a11

li ,i−1 =
ai ,i−1

ui−1,i−1

uii = aii − li ,i−1ai−1,i , i = 2, 3, . . . , n
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The solution of Ax = b is computed using:

Forward

z1 = b1

zi = bi − li ,i−1zi−1, i = 2, 3, . . . , n

Backward

xn =
zn

unn

xi =
zi − ai ,i+1xi+1

uii
, i = n − 1, n − 2, . . . , 1.

The above algorithm is known as Thomas algorithm.
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Solution of nonlinear equations

How does one solve equations

f (x) = 0?

Example:
f (x) := 3x + sin(x)− ex = 0.

If we plot f (x) for 0 ≤ x ≤ 1, we see that f (0) = −1, f (1) = 1.12,
and f (2) = −0.47.
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Bisection method

Theorem: If f (x) is continuous and changes sign in [a, b], then
there is a constant c such that f (c) = 0. We call x = c is a zero
or root of f (x) = 0.

Approximate solution: Let ǫ > 0 and a continuous function f (x)
satisfies

f (a) · f (b) < 0

in a given interval [a, b]. We say that c = (a + b)/2 is an
approximate solution if |f (c)| ≤ ǫ.
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Want to solve f (x) := 3x + sin(x)− ex = 0. Since f (0) · f (1) < 0,
we assume that there is a root x∗ ∈ [0, 1]. We assume that the
mid-point of the interval is the desired root. If the root x∗ 6= 0.5,
we divide the interval. Clearly, the root must be either in [0, 0.5] or
in [0.5, 1].

The procedure will continue until
the tolerance

|f (x∗)| ≤ ǫ,

which implies that x∗ is an approx-
imate root.
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algorithm:

1. Determine the interval [a, b] by inspection.

2. Let x = (a + b)/2 is the solution.

3. Check convergence criterion: If

f (x) ≤ ǫ

is satisfied, then stop.

4. If f (a) · f (x) > 0, then both f (a) and f (x) have the same
sign. Hence, replace a by x and go to step (2)

5. If f (a) · f (x) < 0, then f (a) and f (x) have opposite sign.
Hence, replace b by x and go to step (2)
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Bisection method

Let cn be the approximation of the true solution x∗ after n steps of
Bisection method. Prove the following error bound

|x∗ − cn| ≤ 2−n(b − a).

Let ci+1 = (ai + bi )/2 be the approximation at i -th step and the
next interval is [ai+1, bi+1], where ai+1 = ai and bi+1 = ci+1 or
ai+1 = ci+1 and bi+1 = bi . Then bi+1 − ai+1 = bi−ai

2 . If a0 = a
and b0 = b, we can write

bn − an = 2−n(b − a)

and
f (bn)f (an) ≤ 0.
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Bisection method

Clearly,
lim

n→∞
(bn − an) = 0.

Let x∗ = limn→∞ bn = limn→∞ an.

We get limn→∞ f (an)f (bn) ≤ 0 implies [f (x∗)]2 ≤ 0. Therefore,
f (x∗) = 0.

The error bound at n-th step is

|x∗ − cn| ≤ 2−n|b − a|

since an−1 ≤ x∗ ≤ cn ≤ bn−1 or an−1 ≤ cn ≤ x∗ ≤ bn−1.
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Bisection method

Example: Solve 3x + sin(x)− ex = 0 in the interval [0, 1] using a
tolerance 10−1.

Solution: Let a = 0, and b = 1. Then f (a) = −1 and
f (b) = 1.1232.

Let x = (a + b)/2 = 0.5. Then f (x) = 0.3307. Since
f (a) · f (x) < 0, we set b = 0.5 and x = (a + b)/2 = 0.25.

Now f (x) = −0.2866 and f (x) · f (b) < 0. So we set a = 0.25 and
x = (a + b)/2 = 0.3750. We get f (x) = 0.0363.

Since |f (x)| < 10−1, the desired solution is x∗ = 0.375.
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Secant method

Let x∗ be such that f (x∗) = 0.

Suppose that x0 and x1 are two points such that |f (x1)| < |f (x0)|.
Then |x∗ − x1| < |x∗ − x0|.

Let the straight line joining points (x0, f (x0)) and (x1, f (x1))
passes through the point (x2, 0).

Using similar triangles,

x1 − x2

f (x1)
=

x0 − x1

f (x0)− f (x1)
.
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Secant method

Using similar triangles,

x1 − x2

f (x1)
=

x0 − x1

f (x0)− f (x1)
.

Therefore,

x2 = x1 − f (x1)
x0 − x1

f (x0)− f (x1)
.

Repeating the procedure, we get:

xn+1 = xn − f (xn)
xn−1 − xn

f (xn−1)− f (xn)
.
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