Iterative method

Convergence criterion:

Theorem: Let A be a square matrix. Then

$$
\lim _{k \rightarrow \infty} A^{k} x=0 \text { for every } x \in \mathbb{R}^{n}
$$

is equivalent to,

$$
\rho(A)<1
$$

where $\rho(A)$ is the spectral radius.

Iterative method

Convergence criterion:

Theorem: The sequence $\left\{x^{k}\right\}_{k=0}^{\infty}$ that is defined by

$$
x^{k+1}=T x^{k}+c, \quad \forall k \geq 0
$$

converges to the solution of

$$
x=T x+c
$$

if and only if $\rho(T)<1$.
This is known as fixed point iteration.

Iterative method

Proof: Let $\rho(T)<1$.

$$
\begin{aligned}
x^{k+1} & =T x^{k}+c \\
& =T\left(T x^{k-1}+c\right)+c \\
& =\cdots \cdots \\
& =T^{k+1} x^{0}+\left(T^{k}+\cdots+M+I\right) c \\
& =T^{k+1} x^{0}+\sum_{j=0}^{k} T^{k} c \\
\lim _{k \rightarrow \infty} x^{k} & =\lim _{k \rightarrow \infty} T^{k+1} x^{0}+\sum_{j=0}^{\infty} T^{k} c
\end{aligned}
$$

Iterative method

Since $\rho(T)<1$, then $\lim _{k \rightarrow \infty} T^{k} x^{0}=0$ for every x^{0} and

$$
\sum_{j=0}^{\infty} T^{k}=(I-T)^{-1}
$$

Therefore

$$
\lim _{k \rightarrow \infty} x^{k}=\left(I-M^{-1}\right) c=x
$$

This implies that

$$
x=T x+c .
$$

To prove the converse, let z be an arbitrary, and x be the unique solution to $x=T x+c$.

Iterative method

Let $x^{k+1}=T x^{k}+c$ for $k \geq 0$ and the sequence $\left\{x^{k}\right\}_{k=0}^{\infty}$ converge to x. Define $x^{0}=x-z$.

$$
\begin{aligned}
x-x^{k} & =T x+c-\left(T x^{k-1}+c\right) \\
& =T\left(x-x^{k-1}\right) \\
& =T\left(T\left(x-x^{k-2}\right)\right) \\
& =\vdots \\
& =T^{k}\left(x-x^{0}\right) \\
& =T^{k} z \\
\lim _{k \rightarrow 0} T^{k} z & =\lim _{k \rightarrow 0}\left(x-x^{k}\right)=0
\end{aligned}
$$

Since this is true for any $z \in \mathbb{R}^{n}$, we must have $\rho(T)<1$

Direct method

Problem:

Find the number of arithmetic operations for forward Gauss elimination process.

Solution: At i-th column, $n-i$ division is required to reduce all elements below the diagonal.

The total \# of divisions is $\sum_{i=1}^{n-1}(n-i)=n^{2} / 2-n / 2$.

Direct method

Ignoring leading zero elements, $n-i+1$ multiplications are required at $n-i$ rows of the augmented matrix.

The total \# of multiplications are

$$
\sum_{i=1}^{n-1}(n-i+1)(n-i)=n^{3} / 3-n / 3
$$

The \# of subtractions are same as that of multiplications.
The total \# of operations is $2 n^{3} / 3+n^{2} / 2-7 n / 6=\mathcal{O}\left(n^{3}\right)$.

Direct method

Problem:

Find the number of arithmetic operations for back substitution in Gauss elimination process.

Solution:

At i-th row, $n-i$ multiplications are required.

Such multiplications are required at $(n-1)$ rows (except the last one).

The total \# of multiplications: $\sum_{i=1}^{n-1} i=n^{2} / 2-n / 2$

Direct method

The total \# of divisions: n.
The \# of subtraction is same as the number of multiplications.

The total \# of operations for back substitution is n^{2}.

Exercise: Determine the computational complexity of the Gauss elimination process.

Direct method

Sparse matrix:
A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
a_{i j}=0
$$

for all pairs (i, j) that satisfies $|i-j|>1$.

Direct method

Sparse matrix:
A tri-diagonal system may be written as:

$$
\begin{aligned}
d_{1} x_{1}+c_{1} x_{2} & =b_{1} \\
a_{i} x_{i-1}+d_{i} x_{i}+c_{i} x_{i+1} & =b_{i} ; \quad 2 \leq i \leq n-1 \\
a_{n} x_{n-1}+d_{n} x_{n} & =b_{n}
\end{aligned}
$$

The coefficient matrix A has all elements zero other than 3 main diagonal elements.

Direct method

Sparse matrix:
The tri-diagonal matrix is:

$$
A=\left[\begin{array}{lllllll}
d_{1} & c_{1} & 0 & 0 & 0 & 0 & 0 \\
a_{2} & d_{2} & c_{2} & 0 & 0 & 0 & 0 \\
0 & a_{3} & d_{3} & c_{3} & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & a_{n} & d_{n}
\end{array}\right]
$$

Therefore, it is not necessary to store and calculate all elements.
Considering this fact, we can reduce the cost of direct solver.

Direct method

Thomas algorithm:

Let $A=L U$ be the $L U$ decomposition of the tri-diagonal matrix A, where

$$
\begin{aligned}
& L=\left[\begin{array}{lllll}
1 & & & & \\
I_{21} & 1 & & & \\
& I_{32} & 1 & & \\
& & & & \\
& & & I_{n-1, n} & 1
\end{array}\right] \\
& U=\left[\begin{array}{lllll}
u_{11} & u_{12} & & & \\
& u_{22} & u_{23} & & \\
& & u 33 & u_{34} & \\
& & & & u_{n n}
\end{array}\right]
\end{aligned}
$$

Direct method

Lu decomposition of tri-diagonal system
i-th row of $L x$ isth column of u

$$
e_{i-1} u_{i-1 i}+u_{i i}=a_{i i}=d_{i}, \quad i=2, \cdots n
$$

$(i-1)$-th row of $L \times i$ th colum of u

$$
u_{i-1 i}=a_{i-1 i}=c_{i-1}, \quad i=2,3, \cdots n
$$

i-th row of $L \quad x$ (i-1)-th column of U

$$
l_{i i-1} u_{i-1 i-1}=a_{i i-1}=a_{i} \quad i=2,3, \cdots n
$$

Thus.

$$
\left.\begin{array}{rl}
u_{11} & =a_{11}=d_{1} \\
l_{i i-1} & =\frac{a_{i-1}}{u_{i-1 i-1}} \\
u_{i i} & =a_{i i}-l_{i i-1} u_{i-1 i} \\
& =a_{i i}-l_{i i-1} a_{i+i}
\end{array}\right\} \quad i=2,3, \cdots n
$$

Direct method

Thomas algorithm:
The elements $\iota_{i j}$ and $u_{i j}$ are determined as

$$
\begin{aligned}
u_{11} & =a_{11} \\
l_{i, i-1} & =\frac{a_{i, i-1}}{u_{i-1, i-1}} \\
u_{i i} & =a_{i i}-l_{i, i-1} a_{i-1, i}, \quad i=2,3, \ldots, n
\end{aligned}
$$

Direct method

The solution of $A \mathbf{x}=\mathbf{b}$ is computed using:

Forward

$$
\begin{aligned}
z_{1} & =b_{1} \\
z_{i} & =b_{i}-l_{i, i-1} z_{i-1}, \quad i=2,3, \ldots, n
\end{aligned}
$$

Backward

$$
\begin{aligned}
x_{n} & =\frac{z_{n}}{u_{n n}} \\
x_{i} & =\frac{z_{i}-a_{i, i+1} x_{i+1}}{u_{i i}}, \quad i=n-1, n-2, \ldots, 1
\end{aligned}
$$

The above algorithm is known as Thomas algorithm.

Solution of nonlinear equations

How does one solve equations

$$
f(x)=0 ?
$$

Example:

$$
f(x):=3 x+\sin (x)-e^{x}=0
$$

If we plot $f(x)$ for $0 \leq x \leq 1$, we see that $f(0)=-1, f(1)=1.12$, and $f(2)=-0.47$.

Bisection method

Theorem: If $f(x)$ is continuous and changes sign in $[a, b]$, then there is a constant c such that $f(c)=0$. We call $x=c$ is a zero or root of $f(x)=0$.

Approximate solution: Let $\epsilon>0$ and a continuous function $f(x)$ satisfies

$$
f(a) \cdot f(b)<0
$$

in a given interval $[a, b]$. We say that $c=(a+b) / 2$ is an approximate solution if $|f(c)| \leq \epsilon$.

Bisection method

Want to solve $f(x):=3 x+\sin (x)-e^{x}=0$. Since $f(0) \cdot f(1)<0$, we assume that there is a root $x^{*} \in,[0,1]$. We assume that the mid-point of the interval is the desired, root. If the root $x^{*} \neq 0.5$, we divide the interval. Clearly, the root must be either in $[0,0.5]$ or in $[0.5,1]$.

The procedure will continue until the tolerance

$$
\left|f\left(x^{*}\right)\right| \leq \epsilon,
$$

which implies that x^{*} is an approximate root.

Bisection method

algorithm:

1. Determine the interval $[a, b]$ by inspection.
2. Let $x=(a+b) / 2$ is the solution.
3. Check convergence criterion: If

$$
f(x) \leq \epsilon
$$

is satisfied, then stop.
4. If $f(a) \cdot f(x)>0$, then both $f(a)$ and $f(x)$ have the same sign. Hence, replace a by x and go to step (2)
5. If $f(a) \cdot f(x)<0$, then $f(a)$ and $f(x)$ have opposite sign. Hence, replace b by x and go to step (2)

Bisection method

Let c_{n} be the approximation of the true solution x^{*} after n steps of Bisection method. Prove the following error bound

$$
\left|x^{*}-c_{n}\right| \leq 2^{-n}(b-a)
$$

Let $c_{i+1}=\left(a_{i}+b_{i}\right) / 2$ be the approximation at i-th step and the next interval is $\left[a_{i+1}, b_{i+1}\right]$, where $a_{i+1}=a_{i}$ and $b_{i+1}=c_{i+1}$ or $a_{i+1}=c_{i+1}$ and $b_{i+1}=b_{i}$. Then $b_{i+1}-a_{i+1}=\frac{b_{i}-a_{i}}{2}$. If $a_{0}=a$ and $b_{0}=b$, we can write

$$
b_{n}-a_{n}=2^{-n}(b-a)
$$

and

$$
f\left(b_{n}\right) f\left(a_{n}\right) \leq 0
$$

Bisection method

Clearly,

$$
\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0
$$

Let $x^{*}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}$.
We get $\lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right) \leq 0$ implies $\left[f\left(x^{*}\right)\right]^{2} \leq 0$. Therefore, $f\left(x^{*}\right)=0$.

The error bound at n-th step is

$$
\left|x^{*}-c_{n}\right| \leq 2^{-n}|b-a|
$$

since $a_{n-1} \leq x^{*} \leq c_{n} \leq b_{n-1}$ or $a_{n-1} \leq c_{n} \leq x^{*} \leq b_{n-1}$.

Bisection method

Example: Solve $3 x+\sin (x)-e^{x}=0$ in the interval $[0,1]$ using a tolerance 10^{-1}.

Solution: Let $a=0$, and $b=1$. Then $f(a)=-1$ and $f(b)=1.1232$.

Let $x=(a+b) / 2=0.5$. Then $f(x)=0.3307$. Since $f(a) \cdot f(x)<0$, we set $b=0.5$ and $x=(a+b) / 2=0.25$.

Now $f(x)=-0.2866$ and $f(x) \cdot f(b)<0$. So we set $a=0.25$ and $x=(a+b) / 2=0.3750$. We get $f(x)=0.0363$.

Since $|f(x)|<10^{-1}$, the desired solution is $x^{*}=0.375$.

Secant method

Let x^{*} be such that $f\left(x^{*}\right)=0$.

Suppose that x_{0} and x_{1} are two points such that $\left|f\left(x_{1}\right)\right|<\left|f\left(x_{0}\right)\right|$. Then $\left|x^{*}-x_{1}\right|<\left|x^{*}-x_{0}\right|$.

Let the straight line joining points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ passes through the point $\left(x_{2}, 0\right)$.

Using similar triangles,

$$
\frac{x_{1}-x_{2}}{f\left(x_{1}\right)}=\frac{x_{0}-x_{1}}{f\left(x_{0}\right)-f\left(x_{1}\right)}
$$

Secant method

Using similar triangles,

$$
\frac{x_{1}-x_{2}}{f\left(x_{1}\right)}=\frac{x_{0}-x_{1}}{f\left(x_{0}\right)-f\left(x_{1}\right)}
$$

Therefore,

$$
x_{2}=x_{1}-f\left(x_{1}\right) \frac{x_{0}-x_{1}}{f\left(x_{0}\right)-f\left(x_{1}\right)}
$$

Repeating the procedure, we get:

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n-1}-x_{n}}{f\left(x_{n-1}\right)-f\left(x_{n}\right)}
$$

