
Kinds of error and computer arithmetic Convergence and efficiency Solution of linear equations

Iterative method

Let xk denotes the approximate solution of Ax = b, then we can
write

xk+1 = M−1(b − Bxk)

or
xk+1 = Gxk + M−1b.

xk is called k-th iterate.

G = −M−1B is called the iteration matrix.

M is usually picked such that the resulting system is easy to solve.
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Jacobi iteration

We can rewrite this process as

xk+1 = D−1[b − (L + U + D − D)xk ],

which gives

xk+1 = D−1[b − (L + U + D − D)xk ].

Therefore
xk+1 = xk + D−1 [b − Axk ]︸ ︷︷ ︸

rk

.
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We have the Jacobi iteration matrix −D−1(L + U), where
A = L + D + U.

Let A = [aij ] and x = [xj ], where i , j = 1, 2 . . . , n.

We can write

Ux =
n∑

j=i+1

aijxj

and

Lx =
i−1∑

j=1

aijxj .
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Therefore, the Jacobi iteration scheme can be written as

xk+1
i =

1

aii


bi −

i−1∑

j=1

aijx
k
j −

n∑

j=i+1

aijx
k
j


 , i = 1, 2, . . . , n; k = 1, 2, . . . ,

xk+1
i =

1

aii


bi −

n∑

j=1,j 6=i

aijx
k
j


 , i = 1, 2, . . . , n; k = 1, 2, . . . , . . .
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Gauss-Seidel iteration:

Consider the scheme

Dxk+1 = b − Lxk − Uxk .

If we replace assumed values xk
j with the approximated values

xk+1
j as soon as they are available, we get

Dxk+1 = b − Lxk+1 − Uxk .

The Gauss-Seidel iteration takes the following form

xk+1 = (L + D)−1[b − Uxk ].
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Gauss-Seidel iteration:

This can also be stated as:

xk+1
i =

1

aii


bi −

i−1∑

j=1

aijx
k+1
j −

n∑

j=i+1

aijx
k
j


 , i = 1, 2, . . . , n; k = 1, 2, . .

Remark:

Jacobi method calculates all xk+1
i using old values xk

i .

Gauss-Seidel method uses xk+1
i for calculating xk+1

i+1
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Convergence criterion iterative methods

The iterative process can be stopped if

‖b − Axk+1‖ ≤ ǫ or ‖xk+1 − xk‖ ≤ ǫ

or if
‖b − Axk+1‖

‖b‖ ≤ ǫ or
‖xk+1 − xk‖

‖xk‖ ≤ ǫ
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Convergence criterion:

The sufficient condition for convergence is the diagonally dominant
property;

|aii | >
n∑

j=1,i 6=j

|aij |.

If the matrix A is diagonally dominant, both the Jacobi method
and the Gauss-Seidel method converge irrespective of the initial
values xk .
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