
Errors associated with arithmetic operations

◮ To avoid subtraction between nearly equal numbers, consider

x1 =
−b +

√
b2 − 4ac

2a

(
−b −

√
b2 − 4ac

−b −
√

b2 − 4ac

)
,

which implies to

x1 =
−2c

b +
√

b2 − 4ac
.

◮ We now get

x1 =
−2.000

62.10 + 62.06
= −0.01610.

◮ The relative error = 6.2 × 10−4
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Kinds of error and computer arithmetic
64-bit representation of a real number

The first bit is reserved for sign.

The following 11-bit is used for exponent, which gives a range of 0
to 211 − 1 = 2047. To ensure the representation of small number,
ranges of exponent are L = −1023 and U = 1024.

Last 52-bit is used for mantissa, which corresponds to between 15
and 16 decimal digits.

In a normalized number system, the mentissa for the largest
number is

1︸︷︷︸ . 111 . . . . . . 1︸ ︷︷ ︸
52 digits

.
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Kinds of error and computer arithmetic
64-bit representation of a real number

x = ±
(
d0 + d1

β + d2
β2 + . . .

dp−1

βp−1

)
βE

± is represented by (−1)s , p = 52, and β = 2.

The first bit contains s = 0 to get a positive number.

For the mentissa of the smallest positive number, we get d0 = 1
and di = 0 for all 1 ≤ i ≤ p − 1.

In other words, mentissa is 1.0000 . . . . . . .

The smallest representable positive number is
(−1)0(1 + 0)2−1022 ≈ 0.2225 × 10−307 - known as underflow.

Can we calculate the overflow (e.g. (2− 2−52)21023)?
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Numerical algorithm

An algorithm is a procedure that describes, in an unambiguous
manner, a finite sequence of steps to be performed in a specified
order.

The object of the algorithm is to implement a procedure to solve a
problem or approximate a solution to the problem.

A description of the algorithm is called a pseudo-code that
specifies the input to be supplied and the form of the output.
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Numerical algorithm

Example:

Develop an algorithm for computing the Euclidean norm of an
n-dimensional vector x = [x1, x2, . . . , xn]

T , which is defined by

‖x‖2 =

[
n∑

i=1

x2
i

]1/2

.
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Numerical algorithm

The pseudo-code of the algorithm:

Algorithm 1 Euclidean norm

INPUT n, x1, x2, . . . , xn

OUTPUT norm
sum=0
for i = 1, 2, . . . , n do
sum = sum +x2

i

end for
norm =

√
sum

return norm
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Convergence and efficiency
Sensitivity and conditioning

◮ A problem is said to be insensitive, or well-conditioned, if a
given relative change in the input data causes a reasonably
commensurate relative change in the solution.

◮ A problem is said to be sensitive, or ill-conditioned, if the
relative change in the solution can be much larger than that
in the input data.

◮ A condition number is defined by

cond(f ) =
| (f (x̃)− f (x))/f (x) |

| (x̃ − x)/x | =
| ∆f /f |
| ∆x/x | ≈|

xf ′(x)

f (x)
|
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Convergence and efficiency
Sensitivity and conditioning

Let f (x) =
√

x + 1−√x and x is large.

The concept of condition number implies that the calculation of
f (x) is stable.

How does one use the concept of condition number to explain
subtraction cancellation error?
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Submit assignment

All matlab code must be submitted using the submit assignment
tool available in the Labnet system.

How does one use submit?

login to your linux labnet account.

Open a terminal (Application→ Accessories→terminal.
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Submit assignment

mkdir amat3132

cd amat3132

mkdir amat3132-a1

copy files to amat3132-a1
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Submit assignment

cd ∼/amat3132

submit list

submit submit amat3132-1 a1

Use a1, a2, a3, a4, a5, a6 to specify the appropriate assignment.
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Convergence and efficiency

Suppose that a numerical algorithm produces a sequence of
approximations x1, x2, x3, . . . that are approaching to the correct
answer x∗. We say that the algorithm is convergent and write

lim
n→∞

xn = x∗

if there corresponds to each positive ǫ a real number r such that
| xn − x |< ǫ whenever n > r . (n is an integer!).
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Convergence and efficiency

Example: Since

| n + 1

n
− 1 |< ǫ

whenever n > ǫ−1, then

lim
n→∞

n + 1

n
= 1.

Linear convergence: We say that the rate of convergence is at least
linear if there is a constant c < 1 and an integer N such that

| xn+1 − x∗ |≤ c | xn − x∗ | (n ≥ N).
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Convergence and efficiency

Super-linear convergence: We say that the rate of convergence is
at least super-linear if there exist a sequence ǫn tending to 0 and
an integer N such that

| xn+1 − x∗ |≤ ǫn | xn − x∗ | (n ≥ N).

Quadratic convergence: We say that the rate of convergence is at
least quadratic if there exist C and an integer N such that

| xn+1 − x∗ |≤ C | xn − x∗ |2 (n ≥ N).
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Convergence and efficiency

Big O: Let x and y be two different numbers that depend on the
parameter ǫ. If there are constants C and ǫ∗ such that
| x |≤ C | y | if ǫ → ǫ∗, then we write

x = O(y), ǫ → ǫ∗.

Linear convergence: | xn+1 − x∗ |≤ O(| xn − x∗ |) (n ≥ N).

Super-linear convergence: | xn+1− x∗ |≤ O(| xn− x∗ |) (n ≥ N).

Quadratic convergence: | xn+1 − x∗ |≤ O(| xn − x∗ |2) (n ≥ N).
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Submit assignment

All matlab code must be submitted using the submit assignment
tool available in the Labnet system.

How does one use submit?

login to your linux labnet account.

Open a terminal (Application→ Accessories→terminal.

AMATH 3132: Numerical analysis I Memorial University of Newfoundland



Submit assignment

mkdir amat3132

cd amat3132

mkdir amat3132-a1

copy files to amat3132-a1
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Submit assignment

cd ∼/amat3132

submit list

submit submit amat3132-1 a1

Use a1, a2, a3, a4, a5, a6 to specify the appropriate assignment.
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System of linear equations

A set of simultaneous linear algebraic equations can be expressed as

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = b2

where n is the number of unknowns, the coefficients aij ,
i = 1, . . . , n, j = 1, . . . , n and the constants bi , i = 1, . . . , n are
known, and xi , i = 1, . . . , n are unknowns.
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System of linear equations

This system can also be written as

Ax = b,

where A is the n× n coefficient matrix, and b, x are vectors of size
n.

The solution methods can be divided into two types:

1. Direct methods.

2. Indirect or iterative methods.
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System of linear equations

Commonly used direct methods:

1. Gauss elimination method.

2. Gauss-Jordan method.

3. LU decomposition method.
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System of linear equations

Commonly used iterative methods:

1. Jacobi method.

2. Gauss-Seidel method.

3. Relaxation method.
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Direct method

Example:

Let us consider a linear system Ax = b, the matrix A and the right
hand side vector b is given such that the augmented matrix A | b
can be written as:




4 −2 1
... 15

−3 −1 4
... 8

1 −1 3
... 13
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Direct method

Solution:

We want to solve for x using the Gaussian elimination technique.

After elimination, the augmented matrix takes the following form:




4 −2 1
... 15

0 −2.5 4.75
... 19.25

0 0 1.80
... 5.40
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Direct method

Clearly, we can solve the last equation.

Therefore, start from the last equation, and move towards the first
equation.

Using the eliminated augmented matrix, we get

x3 = 3

x2 = −2

x1 = 2

The process is known as back substitution.
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