

- Function name and file name should be the same.
- ▶ There is no end function statement.

Matrix operations			Programming
 >>C=A+B; >>C=AB; >>C=A2; >>C=A2; >>C=A.+3; >>A=[1 2; 3 4] ans= 	1 2 3 4 1 4 9 16		 ▶ Operators = Equal ~ Not equal < Less than > More than or equ > More than or equ > More than or equ > NOT & AND OR any True if any elemental
AMATH 3132: Numerical analysis I		Memorial University of Newfoundland	AMATH 3132: Numerical analysis I

•	Operators	
==	Equal	
$\sim =$	Not equal	
<	Less than	
>	More than	
<=	Less than or equal	
>=	More than or equal	
\sim	NOT	
&	AND	
	OR	
any	True if any element is nonzero	
all	True if all elements are nonzero	

Graphics

Line plot

- x=linspace(0,2*pi,64); y=sin(x); plot(x,y,'o-');
- > xlabel('x'); ylabel('sin(x)'); title('Line plot'); grid on;

- Line plot
 x=linspace(0,2*pi,64);
 y=sin(x);
 plot(x,y,'o-');
- > xlabel('x'); ylabel('sin(x)'); title('Line plot'); grid on;
- - set(gca, 'fontsize',18); axis([0 2*pi -1 1]); axis square; grid off;

Graphics Frror Surfaces x=linspace(0,2*pi,32); What is error? [x.v]=meshgrid(x.v); In scientific computing, we often need to approximate some z=sin(x) .* cos(x);functions or solutions of equations. This results into a defect surf(x,y,z); between the true value and the approximated value. This set(gca,'fontsize'.18); defect is called error xlabel('x'); Sources of error. ylabel('y'); Truncation error zlabel('z'): Round-off error axis square; Propagated error grid off; shading interp; AMATH 3132: Numerical analysis I Memorial University of Newfoundland AMATH 3132: Numerical analysis I Memorial University of Newfound

Error

▶ What is truncation error?

When a function can be approximated by an infinite series, but the series is truncated up to a finite number of terms, the discarded terms introduce an error that is known as truncation error.

Let

$$p_4(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!}$$

be a 3-rd degree polynomial. We know that

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Error

► If we approximate e^x by p₄(x) such that e^x ≈ p₄(x) then the truncation error is

$$e^{x} - p_{4}(x) = \sum_{n=4}^{\infty} \frac{x^{n}}{n!}.$$

- A trunction error is made by the numerical approximation of continuous functions.
- What is round-off error? Numerical error also occurs due to rounding floating point numbers.

Floating point number system

A floating point number system is characterized by four integers:

- β Base
- p Precision
- [L, U] Exponent range

Any floating point number has the form: $x = \pm \left(d_0 + \frac{d_i}{\beta} + \frac{d_i}{\beta^2} + \dots + \frac{d_{i-1}}{\beta^{p-1}} \right) \beta^E$, where d_i is an integer such that $0 \le d_i \le \beta - 1$ for $i = 0 \dots p - 1$, and E is an integer such that $L \le E \le U$.

- ► Mantissa: a string of p base-β digits d₀d₁...d_{p-1}.
- Exponent: E is the exponent.
- ▶ Fraction: the portion d₁...d_{p-1} of the mantissa.

In a computer, the sign, exponent, and mantissa are stored in sperate fields of a given floating point word.

AMATH 3132: Numerical analysis I

Memorial University of Newfoundland

Floating point number system

Any positive real number within the numerical range of the machine is expressed in the normalized form.

 $x = 0.d_1d_2\ldots d_k\cdots \times 10^n,$

where $1 \le d_1 \le 9$ and $0 \le d_i \le 9$ for each $i = 2 \dots k$.

▶ Chopping: We chop off all digits d_{k+1}... and write

 $x = 0.d_1d_2\ldots d_k \times 10^n.$

▶ Rounding: We add 5 × 10^{n-(k+1)} to x and then chop off to get

 $x = 0.\delta_1\delta_2...\delta_k \times 10^n$.

AMATH 3132: Numerical analysis I

Memorial University of Newfoundland

Example

 $\pi = 0.314159265 \cdots \times 10^1$,

which is written as $\pi = 3.1415$ using a five digit chopping, or as $\pi = 3.1416$ using a five-digit rounding.

 \blacktriangleright Note that we add 5×10^{-5} to π and then chop off to round the number.

Data representation in a computer

A decimal integer I can be represented in a binary form

$$(I)_{10} = (a_{m-1} \dots a_2 a_1)_2 = \sum_{j=0}^{m-1} 2^j (a_j).$$

The procedure can be described as:

$$I = 2P_0 + a_0$$

$$P_0 = 2P_1 + a_1$$

$$P_1 = 2P_2 + a_2$$

$$\vdots$$

$$P_{m-2} = 2P_{m-1} + a_{m-1}$$

The process is stopped if $P_{m-1} = 0$.

Numbers cannot be stored exactly by the floating point representation. Let x and y be the exact numbers and x and y their approximate values. Then,

$$x = \tilde{x} + \epsilon_x, y = \tilde{y} + \epsilon_y,$$

where ϵ_x and ϵ_y denote the errors in x and y respectively.

- Find the error associated with a multiplication operation.
- $E = xy \tilde{x}\tilde{y} = xy (x \epsilon_x)(y \epsilon_y) = x\epsilon_y + y\epsilon_x \epsilon_x\epsilon_y$.

There relative error

$$\begin{array}{rcl} \mathsf{R} & = & \displaystyle \frac{R}{xy} = \frac{\epsilon_x}{x} + \frac{\epsilon_y}{y} - \frac{\epsilon_x}{x} \frac{\epsilon_y}{y} \\ & = & \displaystyle R_x + R_y - R_x R_y \\ & \approx & \displaystyle R_x + R_y, \end{array}$$

where $\mid R_x \mid \ll 1$ and $\mid R_y \mid \ll 1$ Example:

▶ Let x = 2.71828183, y = 2.71818283 and $\bar{x} = 2.7183$, $\bar{y} = 2.7181$. Determine the error and relative error associated with the subtraction x - y.

Errors associated with arithmetic operations

Solution: Note that

$$\sqrt{b^2 - 4ac} = \sqrt{(62.10)^2 - (4.000)(1.000)(1.000)} = 62.06.$$

We now get

$$x_1 = \frac{-62.10 + 62.06}{2.000} = \frac{-0.04000}{2.000} = -0.02000.$$

Note the subtraction between nearly equal numbers!

The relative error

$$R_{x_1} = \frac{|-0.01611 + 0.02000|}{|-0.01611|} \approx 2.4 \times 10^{-1}.$$

relative error is large!

Errors associated with arithmetic operations

> To avoid subtraction between nearly equal numbers, consider

$$x_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a} \left(\frac{-b - \sqrt{b^{2} - 4ac}}{-b - \sqrt{b^{2} - 4ac}} \right)$$

which implies to

$$x_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}}$$

We now get

$$x_1 = \frac{-2.000}{62.10 + 62.06} = -0.01610.$$

▶ The relative error = 6.2 × 10⁻⁴

AMATH 3132: Numerical analysis I

Memorial University of Newfoundland

Memorial University of Newfoundland