AMATH 3132: Numerical analysis I

Jahrul Alam

Department of Mathematics and Statistics Eid Memoríal

University of Newfoundlasd

Winter 2010

Introduction to matlab

- Slow compared with FORTRAN or C.
- Automatic memory management.
- Easy to use.
- Shorter program development time.
- Can be converted to C.
- Many tool boxes are available.
- Certain operations can be processed in parallel.

Introduction to matlab

- $\mathrm{x}=1 ; \%$ assigns 1 to the variable x.
- $\mathrm{x}=1: 8 ; \%$ assigns an array to x.
- size (x) \% prints the size [18] of x.
- length $(x) \%$ prints length 8 of x.
- Try $\mathrm{x}=1: 2: 8$
- clear $\mathrm{x} \%$ clears assigned values of x.
- clear all \% clears all variable in the work space.

Introduction to matlab

- abs(x) \% absolute value of x
- $\exp (\mathrm{x}) \%$ e to the x -th power
- fix(x) \% rounds x to integer towards 0
- $\log 10(x) \%$ common logarithm of x to the base 10
- rem $(x, y) \%$ remainder of x / y
- sqrt(x) \% square root of x
$-\sin (x) \%$ sine of $x ; x$ in radians
- $\operatorname{acoth}(\mathrm{x}) \%$ inversion hyperbolic cotangent of x
- help elfun \% get a list of all available elementary functions

Script file

- Create a file test.m with an extension .m. Append the following code, and save.
disp('Hello World');
$\mathrm{x}=30 * \mathrm{pi} / 180$;
$a=\sin (x)$;
disp(a);
- Use matlab command >test;
- Above four line codes are executed.

Matlab function m-file

- We want a function to invoke previous four lines code.
- Create a file test.m with an extension .m. Append the following code, and save.
function test()
disp('Hello World');
$\mathrm{x}=30 * \mathrm{pi} / 180$;
$\mathrm{a}=\sin (\mathrm{x})$;
disp(a);
- Use matlab command >test();
- Above four line codes are executed.
- Function name and file name should be the same.
- There is no end function statement.

Matrix operations

- Let us create a 4×4 matrix.
for $i=1: 4$
for $j=1: 4$ $a(i, j)=i * j$;
end
end
- Can find eigenvalues eig(a)
- Can invert the matrix: inv(a)
- Singular value decomposition: svd(a)
- Transpose a'

Matrix operations

- Enter a row vector $\gg \mathrm{x}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$;
- Enter a column vector $\gg \mathrm{x}=[1 ; 2 ; 3]$;
- Enter a 3×3 matrix $\gg A=\left[\begin{array}{lllllll}1 & 2 & 3 ; 4 & 5 & 6 ; 7 & 8 & 9\end{array}\right]$;
- Special matrices:
- $\gg Z=$ zeros $(4,6)$;
$\gg 0=$ ones $(4,6)$;
$\Rightarrow>I=\operatorname{eye}(4,6)$;
$\gg D=\operatorname{diag}\left(\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]\right)$;

Matrix operations

- $>\mathrm{C}=\mathrm{A}+\mathrm{B}$;
$-\gg \mathrm{C}=\mathrm{A}-\mathrm{B}$;
- $>\mathrm{C}=\mathrm{A} .{ }^{\wedge} 2$;
$-\gg \mathrm{C}=\mathrm{A} . * 3$;
$\rightarrow>A=\left[\begin{array}{llll}1 & 2 ; & 3 & 4\end{array}\right]$
ans=

12
34

- $>\mathrm{A} .{ }^{-} 2$
ans=
14
916

Programming

Control statements

- IF
if (logical expression)
elseif (logical expression)
...
else
end
- WHILE
while(while expression)
…
end

AMATH 3132: Numerical analysis I

Graphics

- Line plot
$\mathrm{x}=$ linspace ($0,2 * \mathrm{pi}, 64$); $y=\sin (x)$; plot($x, y,{ }^{\prime} \mathrm{o}^{\prime}$ ');
- xlabel('x'); ylabel('sin(x)'); title('Line plot'); grid on;
-

set(gca,'fontsize', 18); axis([0 2*pi -1 1]); axis square;

Graphics

- Two plots in one frame. $z=\cos (x)$;
plot(x, z, 'd--') ; ylabel('cos(x)'); grid off;

- hold on;
plot(x, y, 'ro-');
Two plots in one frame. $\mathrm{z}=\cos (\mathrm{x})$;
plot (x, z, 'd--') ;
ylabel('cos(x)'); grid off;

Graphics

- Surfaces
$\mathrm{x}=1$ inspace (0,2 *pi,32) ;
$[\mathrm{x}, \mathrm{y}]=$ meshgrid (x, y);
$z=\sin (x) . * \cos (x)$;
$\operatorname{surf}(x, y, z)$;
set(gca,'fontsize', 18);
xlabel('x'); ylabel('y'); zlabel('z'); axis square;
 grid off;

Graphics

- Surfaces
$\mathrm{x}=$ linspace ($0,2 * \mathrm{pi}, 32$);
$[\mathrm{x}, \mathrm{y}]=$ meshgrid (x, y);
$\mathrm{z}=\sin (\mathrm{x}) . * \cos (\mathrm{x})$;
$\operatorname{surf}(x, y, z)$;
set(gca,'fontsize', 18);
xlabel('x');
ylabel ('y');
zlabel('z');
axis square;

grid off;
shading interp;

Error

-What is error?
In scientific computing, we often need to approximate some functions or solutions of equations. This results into a defect between the true value and the approximated value. This defect is called error.

- Sources of error.
- Truncation error
- Round-off error
- Propagated error
\qquad

Error

Error

- If we approximate e^{x} by $p_{4}(x)$ such that $e^{x} \approx p_{4}(x)$ then the truncation error is
When a function can be approximated by an infinite series, but the series is truncated up to a finite number of terms, the discarded terms introduce an error that is known as truncation error.
- Let

$$
p_{4}(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
$$

be a 3 -rd degree polynomial. We know that

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots
$$

Error

Error

- What is propagated error?

Often we need to calculate a solution sequentially or successively, where a calculation uses previously calculated values.

- Therefore, in addition to error made in the present calculation i.e. output, error from the previous calculation i.e. from input is also added to the output.
- This type of error is called propagation error. Such error can accumulate continuously if the calculation is repeated many times.
- If the propagated error accumulates excessively in an algorithm, the validity of the output is often destroyed. Such algorithms or methods are unstable.
- If the accumulation of the propagated error does not grow rapidly with the number if repeatation, we call the method stable.
- Note that a stable method is not free from propagated error.

Size of error

- Absolute error: The magnitude of the difference between the exact value and the approximate value is called absolute error, and is defined by
absolute error $=\mid$ exact value - approximate value \mid.
- Relative error: It is often useful to measure error relative to the exact value such that
relative error $=\frac{\text { absolute error }}{\mid \text { exact value } \mid}$

Size of error

- Example: Exact value $x_{e}=10 / 3$ and approximate value $x_{a}=3.333$. Then

$$
\begin{gathered}
\text { absolute error }=|10 / 3-3.333|=0.000333 \ldots \\
\text { relative error }=\frac{0.000333 \ldots}{10 / 3}=0.0000999 \ldots
\end{gathered}
$$

Floating point number system

A floating point number system is characterized by four integers:
β Base
p Precision
[$L, U]$ Exponent range
Any floating point number has the form:
$x= \pm\left(d_{0}+\frac{d_{1}}{\beta}+\frac{d_{2}}{\beta^{2}}+\ldots \frac{d_{p-1}}{\beta^{p-1}}\right) \beta^{E}$, where d_{i} is an integer such that $0 \leq d_{i} \leq \beta-1$ for $i=0 \ldots p-1$, and E is an integer such that $L \leq E \leq U$.

- Mantissa: a string of p base- β digits $d_{0} d_{1} \ldots d_{p-1}$.
- Exponent: E is the exponent.
- Fraction: the portion $d_{1} \ldots d_{p-1}$ of the mantissa.

In a computer, the sign, exponent, and mantissa are stored in sperate fields of a given floating point word.

Floating point number system

- Any positive real number within the numerical range of the machine is expressed in the normalized form.

$$
x=0 . d_{1} d_{2} \ldots d_{k} \cdots \times 10^{n},
$$

where $1 \leq d_{1} \leq 9$ and $0 \leq d_{i} \leq 9$ for each $i=2 \ldots k$.

- Chopping: We chop off all digits $d_{k+1} \ldots$ and write

$$
x=0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}
$$

- Rounding: We add $5 \times 10^{n-(k+1)}$ to x and then chop off to get

$$
x=0 . \delta_{1} \delta_{2} \ldots \delta_{k} \times 10^{n}
$$

Floating point number system

- Example

$$
\pi=0.314159265 \cdots \times 10^{1}
$$

which is written as $\pi=3.1415$ using a five digit chopping, or as $\pi=3.1416$ using a five-digit rounding.

- Note that we add 5×10^{-5} to π and then chop off to round the number.

Data representation in a computer

- A decimal integer I can be represented in a binary form

$$
(I)_{10}=\left(a_{m-1} \ldots a_{2} a_{1}\right)_{2}=\sum_{j=0}^{m-1} 2^{j}\left(a_{j}\right)
$$

- The procedure can be described as:

$$
\begin{aligned}
I & =2 P_{0}+a_{0} \\
P_{0} & =2 P_{1}+a_{1} \\
P_{1} & =2 P_{2}+a_{2} \\
& \vdots \\
P_{m-2} & =2 P_{m-1}+a_{m-1}
\end{aligned}
$$

The process is stopped if $P_{m-1}=0$.

Data representation in a computer

- A fractional number $R, 0<R<1$ can be represented as

$$
\begin{aligned}
R & =b_{1} \times \beta^{-1}+b_{2} \times \beta^{-2}+\cdots+b_{m} \times \beta^{-m} \\
& =0 . b_{1} b_{2} \ldots b_{m}
\end{aligned}
$$

- If $\beta=10$ and $0 \leq b_{i} \leq 9$, we get R in the decimal system.
- If $\beta=2$ and $0 \leq b_{i} \leq 1$, we get R in the binary system.

Errors associated with arithmetic operations

- Numbers cannot be stored exactly by the floating point representation. Let x and y be the exact numbers and \tilde{x} and \tilde{y} their approximate values. Then,

$$
x=\tilde{x}+\epsilon_{x}, y=\tilde{y}+\epsilon_{y},
$$

where ϵ_{x} and ϵ_{y} denote the errors in x and y respectively.

- Find the error associated with a multiplication operation.
- $E=x y-\tilde{x} \tilde{y}=x y-\left(x-\epsilon_{x}\right)\left(y-\epsilon_{y}\right)=x \epsilon_{y}+y \epsilon_{x}-\epsilon_{x} \epsilon_{y}$.

Data representation in a computer

We can convert a real number $R, 0<R<1$ to a binary number. The procedure is described below:

$$
\begin{aligned}
2 R & =b_{1}+f_{1} \\
2 f_{1} & =b_{2}+f_{2} \\
& \vdots \\
2 f_{m-1} & =b_{m}+f_{m}
\end{aligned}
$$

where $b_{m}=\operatorname{int}\left(2 f_{m-1}\right)$ and $f_{m}=$ fraction $\left(2 f_{m-1}\right)$.
The process is continued until the fractional part $f_{m}=0$.

Errors associated with arithmetic operations

- There relative error

$$
\begin{aligned}
R & =\frac{R}{x y}=\frac{\epsilon_{x}}{x}+\frac{\epsilon_{y}}{y}-\frac{\epsilon_{x}}{x} \frac{\epsilon_{y}}{y} \\
& =R_{x}+R_{y}-R_{x} R_{y} \\
& \approx R_{x}+R_{y},
\end{aligned}
$$

where $\left|R_{x}\right| \ll 1$ and $\left|R_{y}\right| \ll 1$
Example:

- Let $x=2.71828183, y=2.71818283$ and $\tilde{x}=2.7183$, $\tilde{y}=2.7181$. Determine the error and relative error associated with the subtraction $x-y$.

Errors associated with arithmetic operations

- Solution:

$$
\begin{gathered}
E_{x}=x-\tilde{x}=-1.917 \times 10^{-5}, R_{x}=-6.684 \times 10^{-6} \\
E_{y}=y-\tilde{y}=8.283 \times 10^{-5}, R_{y}=3.0473 \times 10^{-6}
\end{gathered}
$$

- The error associated with subtraction:

$$
\begin{gathered}
E=(x-y)-(\tilde{x}-\tilde{y})=E_{x}-E_{y}=-10.1 \times 10^{-5} \\
R=\frac{E}{x-y}=\frac{-10.1 \times^{-5}}{0.000099} \approx-0.10202020 .
\end{gathered}
$$

- We see that E is small, but R is large.

Errors associated with arithmetic operations

- Solution: Note that

$$
\sqrt{b^{2}-4 a c}=\sqrt{(62.10)^{2}-(4.000)(1.000)(1.000)}=62.06
$$

- We now get

$$
x_{1}=\frac{-62.10+62.06}{2.000}=\frac{-0.04000}{2.000}=-0.02000 .
$$

Note the subtraction between nearly equal numbers!

- The relative error

$$
R_{x_{1}}=\frac{|-0.01611+0.02000|}{|-0.01611|} \approx 2.4 \times 10^{-1} .
$$

relative error is large!

Errors associated with arithmetic operations

- Find the roots of $x^{2}+62.10 x+1=0$ with the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

using a four-digit rounding arithmetic.

- Suppose that we know the roots:

$$
x_{1}=-0.01610723, x_{2}=-62.08390
$$

- Calculate the relative error if arithmetic operations occur between nearly equal number.
- Propose and justify an improvement.

Errors associated with arithmetic operations

- To avoid subtraction between nearly equal numbers, consider

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\left(\frac{-b-\sqrt{b^{2}-4 a c}}{-b-\sqrt{b^{2}-4 a c}}\right),
$$

which implies to

$$
x_{1}=\frac{-2 c}{b+\sqrt{b^{2}-4 a c}}
$$

- We now get

$$
x_{1}=\frac{-2.000}{62.10+62.06}=-0.01610
$$

- The relative error $=6.2 \times 10^{-4}$

