## MEMORIAL UNIVERSITY OF NEWFOUNDLAND

## DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6 MATH 3202 Spring 2019

## **SOLUTIONS**

[5] 1. (a) The surface is the graph of the function  $z = 2x^2 + 8y + 3 = f(x, y)$ . Hence

$$f_x(x,y) = 4x$$
 and  $f_y(x,y) = 8$ 

SO

$$\sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} = \sqrt{16x^2 + 64 + 1} = \sqrt{16x^2 + 65}.$$

The domain of integration, described by the indicated triangle, is bounded by the lines y = 0, x = 1 and y = 8x. Hence it is defined by  $0 \le y \le 8x$  and  $0 \le x \le 1$ . Thus

$$A = \int_0^1 \int_0^{8x} \sqrt{16x^2 + 65} \, dy \, dx$$
$$= \int_0^1 \left[ y\sqrt{16x^2 + 65} \right]_{y=0}^{y=8x} \, dx$$
$$= 8 \int_0^1 x\sqrt{16x^2 + 65} \, dx.$$

We let  $u = 16x^2 + 65$  so  $\frac{1}{32} du = x dx$ . When x = 0, u = 65 and when x = 1, u = 81. The integral becomes

$$A = \frac{1}{4} \int_{65}^{81} \sqrt{u} \, du$$
$$= \frac{1}{4} \left[ \frac{2}{3} u^{\frac{3}{2}} \right]_{65}^{81}$$
$$= \frac{1}{6} (729 - 65^{\frac{3}{2}}).$$

[6] (b) We have  $f(x, y) = x^2 + y^2$  so

$$f_x(x,y) = 2x$$
 and  $f_y(x,y) = 2y$ 

SO

$$\sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} = \sqrt{4x^2 + 4y^2 + 1}.$$

The domain of integration is determined by the projection of the cylinder onto the xyplane, namely the circle  $x^2 + y^2 = 2$ . This suggests that we should use polar coordinates,
for which the circle has the equation  $r = \sqrt{2}$ . Thus  $0 \le r \le \sqrt{2}$  and  $0 \le \theta \le 2\pi$ .
Furthermore,

$$\sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} = \sqrt{4r^2 \cos^2(\theta) + 4r^2 \sin^2(\theta) + 1} = \sqrt{4r^2 + 1}.$$

Recalling that  $dA = r dr d\theta$  in polar coordinates, we have

$$A = \int_0^{2\pi} \int_0^{\sqrt{2}} \sqrt{4r^2 + 1} r \, dr \, d\theta.$$

We let  $u = 4r^2 + 1$  so  $\frac{1}{8} du = r dr$ . When r = 0, u = 1 and when  $r = \sqrt{2}$ , u = 9. Thus the integral becomes

$$A = \frac{1}{8} \int_0^{2\pi} \int_1^9 \sqrt{u} \, du \, d\theta$$

$$= \frac{1}{8} \int_0^{2\pi} \left[ \frac{2}{3} u^{\frac{3}{2}} \right]_{u=1}^{u=9} \, d\theta$$

$$= \frac{13}{6} \int_0^{2\pi} d\theta$$

$$= \frac{13}{6} \left[ \theta \right]_0^{2\pi}$$

$$= \frac{13\pi}{3}.$$

[6] (c) We have

$$\mathbf{R}_u(u,v) = \langle \cos(v), \sin(v), 0 \rangle$$
 and  $\mathbf{R}_v(u,v) = \langle -u\sin(v), u\cos(v), 1 \rangle$ .

Thus

$$\mathbf{R}_u \times \mathbf{R}_v = \langle \sin(v), -\cos(v), u \rangle$$

and so

$$\|\mathbf{R}_u \times \mathbf{R}_v\| = \sqrt{\sin^2(v) + \cos^2(v) + u^2} = \sqrt{1 + u^2}.$$

Hence

$$A = \int_0^1 \int_0^{\pi} \sqrt{1 + u^2} \, dv \, du$$
$$= \int_0^1 \left[ v\sqrt{1 + u^2} \right]_{v=0}^{v=\pi} \, du$$
$$= \pi \int_0^1 \sqrt{1 + u^2} \, du.$$

We let  $u = \tan(\theta)$  so  $du = \sec^2(\theta) d\theta$ . Then

$$\sqrt{1+u^2} = \sqrt{1+\tan^2(\theta)} = \sqrt{\sec^2(\theta)} = \sec(\theta).$$

When  $u=0, \theta=0$  and when  $u=1, \theta=\frac{\pi}{4}$ . Hence the integral becomes

$$A = \pi \int_0^{\frac{\pi}{4}} \sec(\theta) \sec^2(\theta) d\theta$$
$$= \pi \int_0^{\frac{\pi}{4}} \sec^3(\theta) d\theta.$$

Using integration by parts, we find that

$$A = \frac{\pi}{2} \left[ \sec(\theta) \tan(\theta) + \ln|\sec(\theta) + \tan(\theta)| \right]_0^{\frac{\pi}{4}}$$
$$= \frac{\pi}{2} \left[ \sqrt{2} + \ln(\sqrt{2} + 1) \right].$$

[5] 2. (a) Since z = 2x + 2y - 4 = f(x, y), we have

$$f_x(x,y) = f_y(x,y) = 2$$
 and  $\sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} = \sqrt{4+4+1} = 3.$ 

Furthermore, the integrand becomes

$$yz = y(2x + 2y - 4) = 2xy + 2y^2 - 4y.$$

The projection of the indicated plane onto the xy-plane is the line with equation 2x+2y=4 so y=2-x. Since we are interested only in the part of the plane in the first octant, x=0 and y=0 also bound this region. Hence it is defined by  $0 \le y \le 2-x$  and  $0 \le x \le 2$ , and so the surface integral can be written

$$\iint_{S} xz \, dS = \int_{0}^{2} \int_{0}^{2-x} (2xy + 2y^{2} - 4y) \cdot 3 \, dy \, dx$$

$$= 3 \int_{0}^{2} \left[ xy^{2} + \frac{2}{3}y^{3} - 2y^{2} \right]_{y=0}^{y=2-x} \, dx$$

$$= \int_{0}^{2} (x^{3} - 6x^{2} + 12x - 8) \, dx$$

$$= \left[ \frac{1}{4}x^{4} - 2x^{3} + 6x^{2} - 8x \right]_{0}^{2}$$

$$= -4.$$

[4] (b) We have already found that

$$\|\mathbf{R}_u(u,v) \times \mathbf{R}_v(u,v)\| = \sqrt{1+u^2}.$$

Furthermore, the integrand can be written  $xz = uv\cos(v)$ . Hence

$$\iint_{S} yz \, dS = \int_{0}^{1} \int_{0}^{\pi} uv \sin(v) \sqrt{1 + u^{2}} \, dv \, du.$$

The integral with respect to v can be evaluated by parts, giving

$$\iint\limits_{S} xz \, dS = \pi \int_{0}^{1} u \sqrt{1 + u^2} \, du.$$

Now let  $w = 1 + u^2$  so  $\frac{1}{2} dw = u du$ . When u = 0, w = 1 and when u = 1, w = 2. The integral becomes

$$\iint_{S} xz \, dS = \frac{\pi}{2} \int_{1}^{2} \sqrt{w} \, dw$$
$$= \frac{\pi}{2} \left[ \frac{2}{3} w^{\frac{3}{2}} \right]_{1}^{2}$$
$$= \frac{\pi}{3} (2\sqrt{2} - 1).$$

[5] 3. (a) In the xy-plane, the plane x+y+z=1 becomes the line x+y=1, while the plane x+2y+z=1 becomes the line x+2y=1. Furthermore, x=0 and y=0 are boundary curves because we are only interested in the first octant. The projection of E in the xy-plane is then most easily viewed as a Type 1 region (that is, with boundary curves that are functions of x) so we can rewrite the lines as y=1-x and  $y=\frac{1}{2}-\frac{1}{2}x$ . Then the projection is bounded by  $\frac{1}{2}-\frac{1}{2}x\leq y\leq 1-x$  and  $0\leq x\leq 1$ . Furthermore, since E itself is bounded by the surfaces z=1-x-y and z=1-x-2y, it is defined by  $1-x-2y\leq z\leq 1-x-y$ . Thus

$$V = \iiint_{E} dV = \int_{0}^{1} \int_{\frac{1}{2} - \frac{1}{2}x}^{1-x} \int_{1-x-2y}^{1-x-y} dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{\frac{1}{2} - \frac{1}{2}x}^{1-x} \left[ z \right]_{z=1-x-2y}^{z=1-x-y} \, dy \, dx$$

$$= \int_{0}^{1} \int_{\frac{1}{2} - \frac{1}{2}x}^{1-x} y \, dy \, dx$$

$$= \int_{0}^{1} \left[ \frac{1}{2} y^{2} \right]_{y=\frac{1}{2} - \frac{1}{2}x}^{y=1-x} \, dx$$

$$= \frac{1}{8} \int_{0}^{1} (3x^{2} - 6x + 3) \, dx$$

$$= \frac{1}{8} \left[ x^{3} - 3x^{2} + 3x \right]_{0}^{1}$$

$$= \frac{1}{8} \left[ x^{3} - 3x^{2} + 3x \right]_{0}^{1}$$

[4] (b) We can set up the iterated version of this triple integral exactly as in part (a), since the

change of integrand does not affect the geometry of the problem. Thus

$$\iiint_{E} (x+y) \, dV = \int_{0}^{1} \int_{\frac{1}{2} - \frac{1}{2}x}^{1-x} \int_{1-x-2y}^{1-x-y} (x+y) \, dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{\frac{1}{2} - \frac{1}{2}x}^{1-x} \left[ (x+y)z \right]_{z=1-x-2y}^{z=1-x-y} \, dy \, dx$$

$$= \int_{0}^{1} \int_{\frac{1}{2} - \frac{1}{2}x}^{1-x} (xy+y^{2}) \, dy \, dx$$

$$= \int_{0}^{1} \left[ \frac{1}{2}x^{2}y + xy^{2} \right]_{x=\frac{1}{2} - \frac{1}{2}x}^{x=1-x} \, dx$$

$$= \frac{1}{24} \int_{0}^{1} (2x^{3} + 3x^{2} - 12x + 7) \, dx$$

$$= \frac{1}{24} \left[ \frac{1}{2}x^{4} + x^{3} - 6x^{2} + 7x \right]_{0}^{1}$$

$$= \frac{5}{48}.$$

[5] 4. The projection of E onto the xy-plane consists of the unit circle, which in Cartesian coordinates can be defined by  $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$  and  $-1 \le x \le 1$ . (Alternatively, we could also use  $-\sqrt{1-y^2} \le x \le \sqrt{1-y^2}$  and  $-1 \le y \le 1$ .) Since E itself is bounded by  $0 \le z \le y$  we have

$$\iiint_E (x+y)z \, dV = \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_0^y (x+y)z \, dz \, dy \, dx$$

$$= \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \left[ \frac{1}{2} (x+y)z^2 \right]_{z=0}^{z=y} \, dy \, dx$$

$$= \frac{1}{2} \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (xy^2 + y^3) \, dy \, dx$$

$$= \frac{1}{2} \int_{-1}^1 \left[ \frac{1}{3} xy^3 + \frac{1}{4} y^4 \right]_{y=-\sqrt{1-x^2}}^{y=\sqrt{1-x^2}} \, dx$$

$$= \frac{1}{3} \int_{-1}^1 x (1-x^2)^{\frac{3}{2}} \, dx.$$

Let  $u = 1 - x^2$  so  $-\frac{1}{2} du = x dx$ . When x = -1, u = 0 and when x = 1, u = 0. Since the bounds of integration are now the same, we immediately have

$$\iiint_E (x+y)z \, dV = 0.$$