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SOLUTIONS

1. (a) The sequence is defined by a rational expression, so we can write

. . 2403 — 4012 & 24 — 40 24 — 0
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(b) This is a geometric expression, so we can write it as
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Hence this is a geometric sequence with common ratio |r| = ;—g < 1 and so
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(c¢) This expression is comprised of geometric terms, so first we rewrite it as
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The dominant term in the denominator is 7¢, so we have
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which does not exist because the remaining expression is a geometric sequence with
common ratio [r| = 2 > 1.

(d) We can write

lim a; = lim (_1) - lim — ‘ )
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as long as the two limits on the righthand side exist. First,

—1)i 1\’
lim ( ) = lim (——) =
i—oo 3¢ i—00 3

l ?

L=

0
lim 5 = =0
2~>001+?+i—2 1+0+0

lim —— = Jim ——— .
D (i +1)2 b4 2i+1

Hence
lima; =0-0=0.
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[2] 2. (a) By direct substitution,

lim 2 —x B 16 — 4 B
(@y)—@48) 22 — 22y — 3 + 6y 16— 64 — 12448

[5] (b) This time, direct substitution results in a 2 indeterminate form. However, we can factor
both the numerator and the denominator and write
% — (x—2
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1
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6] (¢) Again, direct substitution results in a 2 indeterminate form, and this time it is not

possible to factor and cancel. Thus we will attempt to prove that the limit does not
exist. Along the line y = 1, the limit becomes
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Along the line x = —3, it becomes
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Since these limits are not equal, we conclude that the limit does not exist.

8] (d) Once again, direct substitution results in a § indeterminate form, and we will attempt
to demonstrate that the limit does not exist. Along y = 0, the limit becomes
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Along x = 0, we have
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Along y = x the limit is
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Along y = x*, we can write
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But along x = y?, we have
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Since this is not the same as the limit along the other paths, it must be that the limit

does not exist.



