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SOLUTIONS
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Since 9° is the dominant term in the denominator, we write
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5] (b) Observe that
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Thus, by the Absolute Sequence Theorem,
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Since this limit exists, by the Evaluation Theorem we can conclude that
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[6] 2. The corresponding function is
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Since the denominator is always positive and 2x — 1 > 0 for x > 1, f'(z) > 0 for z > 1 and
therefore f(x) is increasing for x > 1. Hence {a;} must also be monotonic increasing.

Immediately, then, we know that a; = 3 — e% is a lower bound. Furthermore,
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for all i. Hence 3 — % < a; < 3 and therefore {a;} is bounded.

By the Bounded Monotonic Sequence Theorem, then, {a;} must converge.



6] 3. (a) There are several ways in which a non-monotonic sequence could converge. It could
experience diminished oscillations around its limit; it could have a monotonic tail; or it
could simply be a constant sequence. Figure 1 offers examples of each of these.
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Figure 1: Three convergent, non-monotonic sequences as suggested by Question 3(a).

(b) Such a sequence could simply increase (or decrease) without bound, as in Figure 2(a).
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Figure 2: Questions 3(b) and (c).
(c¢) Such a sequence could oscillate forever between the same two (or more) numbers, as in

Figure 2(b).

[4] 4. In order for the numerator to be defined, we must have y > 0. In order for the denominator
to be defined, we must have 22 — y > 0, but to avoid division by zero we must restrict this
to 22—y > 0 or y < z%. Thus the domain of f(x,y) consists of all points below the parabola

= 22 (excluding the parabola itself) and above the z-axis. This is depicted in Figure 3.

[5] 5. Along the line y = 0, we have
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Along the line z = 0, we have
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Figure 3: The domain of f(x,y) for Question 4.

But along the line y = x, we have
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[5] 6. We have
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and
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Since these are equal, z = In(z + y?) satisfies the PDE and we conclude that it is a solution.



