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1. (a) We use Limit Comparison with the convergent geometric series Z -] = Z —:
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so the given series converges.
(b) Note that
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By the Divergence Test, the given series diverges.
(c) We use the Ratio Test, letting
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Since L < 1, the series converges.

We use the Alternating Series Test. Let a; = ﬁ Clearly, lim a; = 0. To see that {a;}
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is decreasing, let f(x) = m so then

fl(z) = _In(z) +1

<0 forall x> 2.
22 1n’(x) .

Hence the given series converges.
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We use the Direct Comparison Test with the (divergent) harmonic series E —. Note
i
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So the given series diverges as well.
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(f) We use the Root Test, letting a; = ( — ) . Then
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so since L > 1 the given series diverges.




