MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 1.4

Math 2000 Worksheet
FALL 2018

SOLUTIONS

1. (a) Let $f(x)=\frac{1}{\sqrt{x}}$; clearly, this is continuous and positive for $x \geq 1$. To see that it is decreasing, we have

$$
f^{\prime}(x)=-\frac{1}{2} x^{-\frac{3}{2}}<0 \quad \text { for } x \geq 1
$$

Hence the given series satisfies the requirements of the Integral Test. Then we compute

$$
\int_{1}^{\infty} x^{-\frac{1}{2}} d x=\lim _{T \rightarrow \infty} \int_{1}^{T} x^{-\frac{1}{2}} d x=\lim _{T \rightarrow \infty}[2 \sqrt{x}]_{1}^{T}=\lim _{T \rightarrow \infty}[2 \sqrt{T}-2]=\infty .
$$

Hence the given series is divergent. (Note that we knew this to be the case, since it is a p-series with $p \leq 1$.)
(b) Let $f(x)=\frac{x}{e^{5 x}}=x e^{-5 x}$. We see immediately that this is continuous and positive for $x \geq 1$. To check that it is decreasing, note that

$$
f^{\prime}(x)=e^{-5 x}-5 x e^{-5 x}=e^{-5 x}(1-5 x)<0 \quad \text { for } x \geq 1
$$

since $e^{-5 x}>0$ for all x and $1-5 x<0$ for $x \geq 1$. Thus we can implement the Integral Test. We compute

$$
\int_{1}^{\infty} x e^{-5 x} d x=\lim _{T \rightarrow \infty} \int_{1}^{T} x e^{-5 x} d x
$$

We use Integration by Parts, letting $u=x$ so $d u=d x$, and $d v=e^{-5 x} d x$ so $v=-\frac{1}{5} e^{-5 x}$. Then the integral becomes

$$
\begin{aligned}
\lim _{T \rightarrow \infty}\left(\left[-\frac{1}{5} x e^{-5 x}\right]_{1}^{T}+\frac{1}{5} \int_{1}^{T} e^{-5 x} d x\right) & =\lim _{T \rightarrow \infty}\left[-\frac{1}{5} x e^{-5 x}-\frac{1}{25} e^{-5 x}\right]_{1}^{T} \\
& =\lim _{T \rightarrow \infty}\left[-\frac{1}{5} T e^{-5 T}-\frac{1}{25} e^{-5 T}+\frac{1}{5} e^{-5}+\frac{1}{25} e^{-5}\right] \\
& =\lim _{T \rightarrow \infty}\left[-\frac{T}{5 e^{5 T}}-\frac{1}{25 e^{5 T}}+\frac{6}{25 e^{5}}\right]=\frac{6}{25 e^{5}},
\end{aligned}
$$

where l'Hôpital's Rule is needed to evaluate the limit of the first term in the square brackets. Hence the given series also converges.
(c) Let $f(x)=\frac{\arctan (x)}{x^{2}+1}$. Again, it is clear that this is continuous and positive for $x \geq 1$. To check that it is decreasing, observe that

$$
f^{\prime}(x)=\frac{1-2 x \arctan (x)}{\left(x^{2}+1\right)^{2}}
$$

The denominator is positive, so we need to ensure that $1-2 x \arctan (x)<0$ for $x \geq 1$. Both x and $\arctan (x)$ are increasing for $x \geq 1$, so the smallest value of $2 x \arctan (x)$ occurs at $x=1$, which is $2(1) \arctan (1)=\frac{\pi}{2}$ so $1-2 x \arctan (x) \leq 1-\frac{\pi}{2}<0$, as required. Hence we can use the Integral Test. We have

$$
\int_{1}^{\infty} \frac{\arctan (x)}{x^{2}+1} d x=\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{\arctan (x)}{x^{2}+1} d x
$$

We try a u-substitution. Let $u=\arctan (x)$ so $d u=\frac{d x}{x^{2}+1}$; for $x=1, u=\frac{\pi}{4}$ and for $x=T, u=\arctan (T)$. The integral becomes
$\lim _{T \rightarrow \infty} \int_{\frac{\pi}{4}}^{\arctan (T)} u d u=\lim _{T \rightarrow \infty}\left[\frac{1}{2} u^{2}\right]_{\frac{\pi}{4}}^{\arctan (T)}=\lim _{T \rightarrow \infty}\left[\frac{1}{2} \arctan ^{2}(T)-\frac{\pi^{2}}{32}\right]=\frac{\pi^{2}}{8}-\frac{\pi^{2}}{32}=\frac{3 \pi^{2}}{32}$.
Thus the given series converges.
(d) Let $f(x)=\frac{\ln (x)}{x^{2}}=x^{-2} \ln (x)$, which is continuous and positive for $x \geq 2$. Then

$$
f^{\prime}(x)=-2 x^{-3} \ln (x)+x^{-3}=\frac{1-2 \ln (x)}{x^{3}} .
$$

Here, for $x \geq 2$ the denominator is positive and $1-2 \ln (x)<1-2 \ln (2)<0$, so $f(x)$ is decreasing for $x \geq 2$. Applying the Integral Test, we compute

$$
\int_{2}^{\infty} \frac{\ln (x)}{x^{2}} d x=\lim _{T \rightarrow \infty} \int_{2}^{T} \frac{\ln (x)}{x^{2}} d x
$$

We try Integration by Parts with $u=\ln (x)$ so $d u=\frac{d x}{x}$ and $d v=\frac{d x}{x^{2}}$ so $v=-\frac{1}{x}$. The integral becomes

$$
\begin{aligned}
\lim _{T \rightarrow \infty}\left(\left[-\frac{\ln (x)}{x}\right]_{2}^{T}+\int_{2}^{T} \frac{d x}{x^{2}}\right) & =\lim _{T \rightarrow \infty}\left[-\frac{\ln (x)}{x}-\frac{1}{x}\right]_{2}^{T} \\
& =\lim _{T \rightarrow \infty}\left[-\frac{\ln (T)}{T}-\frac{1}{T}+\frac{\ln (2)+1}{2}\right]=\frac{\ln (2)+1}{2}
\end{aligned}
$$

where the limit of the first term in the square brackets can be evaluated using l'Hôpital's Rule. Hence the given series converges.
(e) Let $f(x)=\frac{\ln (x)}{x}=x^{-1} \ln (x)$. Once again, we readily see that this is continuous and positive for $x \geq 2$. Also,

$$
f^{\prime}(x)=-x^{-2} \ln (x)+x^{-2}=\frac{1-\ln (x)}{x^{2}}<0 \quad \text { for } x \geq 3
$$

so $f(x)$ is decreasing and we can apply the Integral Test. We have

$$
\int_{3}^{T} \frac{\ln (x)}{x} d x=\lim _{T \rightarrow \infty} \int_{3}^{T} \frac{\ln (x)}{x} d x
$$

Using u-substitution, let $u=\ln (x)$ so $d u=\frac{d x}{x} ; x=3$ gives $u=\ln (3)$ and $x=T$ gives $u=\ln (T)$. The integral becomes

$$
\lim _{T \rightarrow \infty} \int_{\ln (3)}^{\ln (T)} u d u=\lim _{T \rightarrow \infty}\left[\frac{1}{2} u^{2}\right]_{\ln (3)}^{\ln (T)}=\lim _{T \rightarrow \infty}\left[\frac{1}{2} \ln ^{2}(T)-\frac{1}{2} \ln ^{2}(3)\right]=\infty
$$

Therefore the given series is divergent.
2. Let $f(x)=\frac{1}{x^{7}}$. This is continuous and positive for $x \geq 1$, and so certain for $x \geq n$, regardless of what n might be. To see that it is decreasing, we have

$$
f^{\prime}(x)=-\frac{7}{x^{8}}<0 \quad \text { for all } x \geq 1
$$

Finally, observe that the given series is a p-series with $p>1$ and so certainly converges. Then the error after adding together the first n terms, R_{n}, obeys

$$
R_{n} \leq \int_{n}^{\infty} \frac{d x}{x^{7}}=\lim _{T \rightarrow \infty} \int_{n}^{T} \frac{d x}{x^{7}}=\lim _{T \rightarrow \infty}\left[-\frac{1}{6 x^{6}}\right]_{n}^{T}=\lim _{T \rightarrow \infty}\left[-\frac{1}{6 T^{6}}+\frac{1}{6 n^{6}}\right]=\frac{1}{6 n^{6}}
$$

When $n=2$, we have $R_{n} \leq 0.0026$, which provides accuracy to two decimal places. When $n=3$, we have $R_{n} \leq 0.00023$, which provides accuracy to three decimal places, as desired. Then

$$
s_{3}=1+\frac{1}{2^{7}}+\frac{1}{3^{7}} \approx 1.008
$$

is equal to the sum of the series, to three decimal places.

