MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 4.2

Math 1001 Worksheet

Winter 2023

For practice only. Not to be submitted.

1. Find the particular solution to each initial value problem.

(a)
$$t^2y^2\frac{dy}{dt} = 1$$
, $y(3) = 1$

(b)
$$t^2 y^2 \frac{dy}{dt} = \sqrt{1 - y^2}, \quad y(-2) = 0$$

(c)
$$\frac{dy}{dt} - ty^2 - 4t = 0$$
, $y(1) = 2$

(d)
$$y \frac{dy}{dt} - e^{t+y} = 0$$
, $y(0) = 0$

(e)
$$\cos(y)\frac{dy}{dt} + \csc(y) = 0$$
, $y(-\frac{1}{8}) = \frac{\pi}{6}$

2. Once we have solved a differential equation, we can apply the solution to solve problems involving any relevant scenario. Consider a population of parakeets which has been introduced to a tropical island, where they are growing at an exponential rate. Then we know the population can be modelled by the function

$$y(t) = y_0 e^{kt}$$

where y(t) is the number of parakeets. Suppose t is measured in years, y_0 is the size of the initial population, and k is a constant of proportionality. Two years later, a group of "castaways" arrives on the island for a reality game show. During a challenge, they count roughly 50 parakeets. Three years later, some of the "castaways" return to the island for an "all-star" edition of the show. They discover that there are now about 150 parakeets.

- (a) Determine the value of y_0 .
- (b) Determine the size of the parakeet population after another seven years have elapsed (that is, twelve years after the parakeets were introduced to the island).