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SOLUTIONS

[5] 1. Using implicit differentiation with respect to t,
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6] 2. We differentiate both sides of the equation with respect to x, giving
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Thus the equation of the tangent line is given by
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[4] 3. (a) First we rewrite the given function using the properties of logarithms:

y =1In(z") —In ( xsec(x))
=Tln(x) — %ln(x sec(z))

=Tln(x) — %ln(m) — %ln(sec(m))

13 1
= 5 In(z) — 5 In(sec(x)).

Now we differentiate:

= .2 _Z._—- . t
YT r T2 sec(x) sec(z) tan(z)
13 1
== 5 tan(z)
5] (b) We must use logarithmic differentiation. We take the logarithm of both sides, and get
In(y) =In ([tan(?)x)]ﬁ)
= V/zIn(tan(3x)).

Now we differentiate implicitly, using the Product Rule and then the Chain Rule on the
righthand side:
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