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[4] 2. (a) By the limit definition of the derivative,
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From part (a), the slope of the tangent line at x = —2 is ¢y = 7. Furthermore, the
y-coordinate of the point at z = —2 is y = 3, so (—2,3) is a point on the tangent line.
Then we know that the slope-intercept form of the equation of the tangent line y = 7z +b
where

Hence the equation of the tangent line is y = 7x + 17.

We use the alternative definition of the derivative at z = 1,
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Since f(x) changes definition at © = 1, we need to evaluate the one-sided limits. From
the left,
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does not exist, and therefore

f(z) is not differentiable at = 1.

Again, we use the alternative definition of the derivative at x = 1,
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Since g(x) changes definition at x = 1, we need to evaluate the one-sided limits. From
the left, we again have
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Now the one-sided limits agree, the limit exists and therefore g(x) is differentiable at
r =1



