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[8] 1. By the limit definition of the derivative,
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[4] 2. One possibility is a function with a sharp corner (a cusp) at x = 0, such as f(x) = |x|.
Another possibility is a function with a vertical tangent line at x = 0, such as f(x) = 3

√
x.

3.[5] (a) We use the Chain Rule twice:
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[4] (b) We use the Quotient Rule, follow by the Chain Rule:

y′ =
[1− e2x]′(1 + e2x)− (1− e2x)[1 + e2x]′
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[5] (c) We use the Product Rule twice:

y′ = [x]′ tan(x) sec(x) + x[tan(x) sec(x)]′

= 1 · tan(x) sec(x) + x ([tan(x)]′ sec(x) + tan(x)[sec(x)]′)

= tan(x) sec(x) + x(sec2(x) · sec(x) + tan(x) · sec(x) tan(x))

= tan(x) sec(x) + x sec3(x) + x tan2(x) sec(x).

[5] (d) First we rewrite the function using the properties of logarithms:
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4.[7] (a) We differentiate both sides of the equation with respect to x, using the Product Rule on



the righthand side:
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[2] (b) The slope of the tangent line is
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Hence the equation of the tangent line is
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