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1.[4] (a) This is a quasirational function for which direct substitution gives rise to a 0
0
indetermi-

nate form. We use the Rationalisation Method. Note that there is a radical in both the
numerator and the denominator, so let’s first try rationalising the numerator:

lim
x→4

3−
√
x+ 5√

4x− 7− 3
= lim

x→4

3−
√
x+ 5√

4x− 7− 3
· 3 +

√
x+ 5

3 +
√
x+ 5

= lim
x→4

9− (x+ 5)(√
4x− 7− 3

) (
3 +

√
x+ 5

)
= lim

x→4

4− x(√
4x− 7− 3

) (
3 +

√
x+ 5

) .
Now we’ll rationalise the denominator:
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[4] (b) Direct substitution results in an ∞−∞ indeterminate form, so we need to rewrite the
given function in a more useful way. By writing both terms over a common denominator,
we have
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Now direct substitution results in a 0
0
form, and since this is a quasirational function, we

can use the Rationalisation Method:
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[3] (c) Direct substitution creates a 0
0
form, so we need to make use of the special trigonometric

limit
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Let’s concentrate on the sine function in the numerator first. There are three factors of
sin(2x), so for each of these, we need a factor of 2x in the denominator in order to use the
special limit. Since (2x)3 = 8x3, and there is already a factor of x2 in the denominator,
this means that we need to introduce a factor of 8x. Then we have
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For the remaining sine function, we need 5x in the numerator to use the special limit:
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[3] 2. Since this is a piecewise function whose behaviour changes at x = −2, we must check the
one-sided limits:
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(Note that the second part of the definition of f(x) did not affect our workings because it
applies only for x = −2, which has no effect on the limit as x approaches −2.)

[6] 3. First we set
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x2(x+ 3) = 0,

so we must check x = 0 and x = −3.

At x = 0, the numerator is 9, so x = 0 is a vertical asymptote.

At x = −3, the numerator is 0, so we take the limit:
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Since the limit exists, x = −3 is not a vertical asymptote.



Note that x2 is always non-negative, so the sign of the denominator is entirely determined
by the sign of x + 3. As x → 0−, then, the denominator becomes a small positive number
so, bearing in mind that the numerator is positive,
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As x → 0+, the denominator again becomes a small positive number, so
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