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SOLUTIONS

[4] 1. (a) This is a quasirational function for which direct substitution gives rise to a % indetermi-
nate form. We use the Rationalisation Method. Note that there is a radical in both the
numerator and the denominator, so let’s first try rationalising the numerator:
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Now we’ll rationalise the denominator:
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(b)

Direct substitution results in an co — oo indeterminate form, so we need to rewrite the
given function in a more useful way. By writing both terms over a common denominator,
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Now direct substitution results in a % form, and since this is a quasirational function, we
can use the Rationalisation Method:
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we have

h—0

Direct substitution creates a % form, so we need to make use of the special trigonometric
limit
=1
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Let’s concentrate on the sine function in the numerator first. There are three factors of
sin(2z), so for each of these, we need a factor of 2z in the denominator in order to use the
special limit. Since (22)® = 823, and there is already a factor of 2? in the denominator,
this means that we need to introduce a factor of 8. Then we have
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For the remaining sine function, we need 5z in the numerator to use the special limit:
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2. Since this is a piecewise function whose behaviour changes at x = —2, we must check the

one-sided limits:
lim f(zr) = lim k*z = —2k?
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and
lim f(zx)= lim (4k —z) =4k + 2.
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If the limit exists, then these one-sided limits must be equal, so we set
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and hence k= —1.

(Note that the second part of the definition of f(x) did not affect our workings because it
applies only for = —2, which has no effect on the limit as = approaches —2.)

. First we set
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so we must check £ = 0 and x = —3.

At z = 0, the numerator is 9, so = 0 is a vertical asymptote.

At x = —3, the numerator is 0, so we take the limit:
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Since the limit exists, z = —3 is not a vertical asymptote.



Note that 22 is always non-negative, so the sign of the denominator is entirely determined
by the sign of x + 3. As x — 07, then, the denominator becomes a small positive number
so, bearing in mind that the numerator is positive,
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As x — 07, the denominator again becomes a small positive number, so
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as well.



