MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 1

MATHEMATICS 1000-004

FALL 2025

SOLUTIONS

[12] 1. (a) f(-3) = 0

(b)
$$\lim_{x \to -3^{-}} f(x) = -4$$

(c)
$$\lim_{x \to -3^+} f(x) = -4$$

(d)
$$\lim_{x \to -3} f(x) = -4$$

(e)
$$f(2) = 3$$

(f)
$$\lim_{x \to 2^{-}} f(x) = -2$$

(g)
$$\lim_{x \to 2^+} f(x) = 3$$

- (h) $\lim_{x\to 2} f(x)$ does not exist (because the one-sided limits are not equal)
- (i) f(0) is undefined
- $(j) \lim_{x \to 0^-} f(x) = \infty$
- (k) $\lim_{x \to 0^+} f(x) = -\infty$
- (l) $\lim_{x\to 0} f(x)$ does not exist (and we cannot assign ∞ or $-\infty$ because the one-sided limits do not agree)
- [6] 2. (a) Direct substitution results in a $\frac{0}{0}$ indeterminate form. Since this is a quasirational function, we use the Rationalisation Method:

$$\lim_{x \to -1} \frac{3 - \sqrt{5 - 4x}}{1 - x^2} = \lim_{x \to -1} \frac{3 - \sqrt{5 - 4x}}{1 - x^2} \cdot \frac{3 + \sqrt{5 - 4x}}{3 + \sqrt{5 - 4x}}$$

$$= \lim_{x \to -1} \frac{9 - (5 - 4x)}{(1 - x^2)(3 + \sqrt{5 - 4x})}$$

$$= \lim_{x \to -1} \frac{4x + 4}{(1 - x^2)(3 + \sqrt{5 - 4x})}$$

$$= \lim_{x \to -1} \frac{4(x + 1)}{-(x - 1)(x + 1)(3 + \sqrt{5 - 4x})}$$

$$= \lim_{x \to -1} \frac{4}{-(x - 1)(3 + \sqrt{5 - 4x})}$$

$$= \frac{4}{-(-2)(3 + 3)}$$

$$= \frac{1}{3}.$$

[5] (b) Direct substitution yields a $\frac{0}{0}$ indeterminate form. First we write the given function as a rational function, and then use the Cancellation Method:

$$\lim_{x \to 4} \frac{x(x+4)^{-1} - 2x^{-1}}{x-4} = \lim_{x \to 4} \frac{\frac{x}{x+4} - \frac{2}{x}}{x-4}$$

$$= \lim_{x \to 4} \left(\frac{x^2}{x(x+4)} - \frac{2(x+4)}{x(x+4)}\right) \cdot \frac{1}{x-4}$$

$$= \lim_{x \to 4} \frac{x^2 - 2x - 8}{x(x+4)(x-4)}$$

$$= \lim_{x \to 4} \frac{(x-4)(x+2)}{x(x+4)(x-4)}$$

$$= \lim_{x \to 4} \frac{x+2}{x(x+4)}$$

$$= \frac{6}{4 \cdot 8}$$

$$= \frac{3}{16}.$$

[5] (c) We consider the one-sided limits. Since |x| = x for $x \ge 0$, we have

$$\lim_{x \to 0^+} \frac{5x - |x|}{|x| + 4x} = \lim_{x \to 0^+} \frac{5x - x}{x + 4x} = \lim_{x \to 0^+} \frac{4x}{5x} = \lim_{x \to 0^+} \frac{4}{5} = \frac{4}{5}.$$

Since |x| = -x for x < 0, we have

$$\lim_{x \to 0^{-}} \frac{5x - |x|}{|x| + 4x} = \lim_{x \to 0^{-}} \frac{5x - (-x)}{-x + 4x} = \lim_{x \to 0^{-}} \frac{6x}{3x} = \lim_{x \to 0^{-}} 2 = 2.$$

Thus $\lim_{x\to 0} \frac{5x-|x|}{|x|+4x}$ does not exist because the one-sided limits disagree.

[3] 3. (a) Since f(x) is a rational function, we need only evaluate one of the limits at infinity:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x^3 - 4x^2 + 5x}{8x(9 - x^2)}$$

$$= \lim_{x \to \infty} \frac{2x^3 - 4x^2 + 5x}{72x - 8x^3} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}}$$

$$= \lim_{x \to \infty} \frac{2 - \frac{4}{x} + \frac{5}{x^2}}{\frac{72}{x^2} - 8}$$

$$= \frac{2 - 0 + 0}{0 - 8}$$

$$= -\frac{1}{4}.$$

Thus the line $y = -\frac{1}{4}$ is the only horizontal asymptote.

[9] (b) We set

$$8x(9-x^2) = 0 \implies -8x(x-3)(x+3) = 0$$

so x = 0, x = 3 or x = -3. These are all points of discontinuity (since they make the function undefined) and possible vertical asymptotes.

For x = 0, we see that $f(0) = \frac{0}{0}$ so we must take the limit:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2x^3 - 4x^2 + 5x}{8x(9 - x^2)} = \lim_{x \to 0} \frac{x(2x^2 - 4x + 5)}{8x(9 - x^2)} = \lim_{x \to 0} \frac{2x^2 - 4x + 5}{8(9 - x^2)} = \frac{5}{72}.$$

Since the limit exists, x = 0 is a removable discontinuity and hence cannot be a vertical asymptote.

For x = 3, we see that $f(3) = \frac{33}{0}$. Since this is a $\frac{K}{0}$ form, $\lim_{x \to 3} f(x)$ does not exist and so x = 3 is a non-removable discontinuity and a vertical asymptote.

For x = -3, we see that $f(-3) = \frac{-105}{0}$. Since this is also a $\frac{K}{0}$ form, $\lim_{x \to -3} f(x)$ does not exist and so x = -3 is a non-removable discontinuity and a vertical asymptote as well.