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SOLUTIONS
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2. (a) Direct substitution results in a 8 indeterminate form. Since this is a quasirational func-

tion, we use the Rationalisation Method:
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5] (b) Direct substitution yields a § indeterminate form. First we write the given function as
a rational function, and then use the Cancellation Method:
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5] (c) We consider the one-sided limits. Since |z| = z for > 0, we have
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[3] 3. (a) Since f(x) is a rational function, we need only evaluate one of the limits at infinity:
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Thus the line y = ~1 is the only horizontal asymptote.

We set
82(9—2*) =0 = —8z(z—3)(z+3)=0
sox =0, zx =3 or x = —3. These are all points of discontinuity (since they make the
function undefined) and possible vertical asymptotes.
For z = 0, we see that f(0) = 8 so we must take the limit:
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Since the limit exists, z = 0 is a removable discontinuity and hence cannot be a vertical
asymptote.

For x = 3, we see that f(3) = 2. Since this is a & form, lin% f(z) does not exist and so
z—
r = 3 is a non-removable discontinuity and a vertical asymptote.

For x = —3, we see that f(—3) = =5, Since this is also a & form, limgf(x) does not
T—>—

exist and so x = —3 is a non-removable discontinuity and a vertical asymptote as well.



