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2. (a) Direct substitution yields a § indeterminate form. First we write the given function as

a rational function, and then use the Cancellation Method:
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6] (b) Direct substitution results in a § indeterminate form. Since this is a quasirational func-
tion, we use the Rationalisation Method:
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5] (c) We consider the one-sided limits. Since || = x for 2 > 0, we have
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Thus lim does not exist because the one-sided limits disagree.
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[3] 3. (a) Since f(z) is a rational function, we need only evaluate one of the limits at infinity:
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Thus the line y = —3 is the only horizontal asymptote.

We set
92(4 -2 =0 = —9z(z—-2)(z+2)=0

sox =0,z =2or x = —2. These are all points of discontinuity (since they make the
function undefined) and possible vertical asymptotes.
For z = 0, we see that f(0) = 8 so we must take the limit:
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Since the limit exists, z = 0 is a removable discontinuity and hence cannot be a vertical
asymptote.

For x = 2, we see that f(2) = 22, Since this is a & form, lin% f(z) does not exist and so
r—r
r = 2 is a non-removable discontinuity and a vertical asymptote.
For x = —2, we see that f(—2) = =2. Since this is also a & form, lim2f(x) does not
T——

exist and so x = —2 is a non-removable discontinuity and a vertical asymptote as well.



