MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 1

MATHEMATICS 1000

Fall 2025

SOLUTIONS

[14] 1. (a) f(0) = 0

(b)
$$\lim_{x \to 0^{-}} f(x) = 0$$

(c)
$$\lim_{x \to 0^+} f(x) = 0$$

(d)
$$\lim_{x \to 0} f(x) = 0$$

(e)
$$f(-1) = 1$$

(f)
$$\lim_{x \to -1^{-}} f(x) = -3$$

(g)
$$\lim_{x \to -1^+} f(x) = 1$$

- (h) $\lim_{x\to -1} f(x)$ does not exist (because the one-sided limits do not agree)
- (i) f(2) is undefined
- (j) $\lim_{x \to 2^{-}} f(x) = -2$
- (k) $\lim_{x \to 2^+} f(x) = -2$
- (l) $\lim_{x \to 2} f(x) = -2$
- (m) f(3) is undefined
- (n) $\lim_{x \to 3^-} f(x) = \infty$
- (o) $\lim_{x \to 3^+} f(x) = \infty$
- (p) $\lim_{x \to 3} f(x) = \infty$
- [3] 2. (a) First we consider values to the left of x = -4:

\boldsymbol{x}	-5	-4.5	-4.1	-4.01	-4.001	-4.0001
f(x)	5.5455	5.4250	5.3489	5.3348	5.3335	5.3333

and then values to the right of x = -4:

x	-3	-3.5	-3.9	-3.99	-3.999	-3.9999
f(x)	5.2857	5.2813	5.3193	5.3319	5.3332	5.3333

We can deduce that

$$\lim_{x \to -4^{-}} f(x) = 5.333... = \frac{16}{3} \quad \text{and} \quad \lim_{x \to -4^{+}} f(x) = \frac{16}{3},$$

and since these agree, we can conclude that

$$\lim_{x \to -4} f(x) = \frac{16}{3}.$$

x	-0.5	0	0.4	0.49	0.499	0.4999
f(x)	9.1250	16	72.8	714.005	7126.5	71251.5

and then values to the right of $x = \frac{1}{2}$:

x	1.5	1	0.6	0.51	0.501	0.5001
f(x)	-6.125	-13	-69.8	-711.005	-7123.5	-71248.5

We can deduce that

$$\lim_{x \to \frac{1}{2}^-} f(x) = \infty \quad \text{and} \quad \lim_{x \to \frac{1}{2}^+} f(x) = -\infty.$$

Since these disagree, we can only write that $\lim_{x\to \frac{1}{2}}f(x)$ does not exist.