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SOLUTIONS

1. (a) Direct substitution produces a 0
0
indeterminate form, so we use the cancellation method:

lim
x→4

2x2 − 7x− 4

3x2 − 14x+ 8
= lim

x→4

(2x+ 1)(x− 4)

(3x− 2)(x− 4)
= lim

x→4

2x+ 1

3x− 2
=

9

10
,

exactly as we deduced using the numerical approach in Question 2(a) of the Worksheet
for Section 1.2.

(b) Direct substitution produces a 0
0
indeterminate form. Since this is a rational function,

we use the cancellation method:

lim
x→−1

3x2 − 9x− 12

x3 + 7x2 + 15x+ 9
= lim

x→−1

3(x+ 1)(x− 4)

(x+ 3)2(x+ 1)
= lim

x→−1

3(x− 4)

(x+ 3)2
=

−15

4
.

This corroborates our guess in Question 2(c) of the Worksheet for Section 1.2.

(c) Direct substitution produces a 0
0
indeterminate form, so we use the cancellation method:

lim
t→2

t2 − t− 6

t3 − 6t2 + 12t− 8
= lim

t→2

(t+ 3)(t− 2)

(t− 2)3
= lim

t→2

t+ 3

(t− 2)2
.

Now direct substitution produces a K
0
form, so the limit does not exist. As t → 2 from

either the left or the right, (t + 3) tends towards 5 (a positive number) while (t − 2)2

becomes a small positive number (because the squares of non-zero real numbers are
always positive). Hence

lim
t→2

t2 − t− 6

t3 − 6t2 + 12t− 8
= ∞.

(d) In this case, direct substitution results in a K
0
form, so we know that the limit does not

exist. As x → 1
2
from either side, 3x approaches 3

2
(a positive number). From the left

as x → 1
2
, (2x− 1) tends towards a small negative number, so

lim
x→ 1

2

−

3x

2x− 1
= −∞.

From the right as x → 1
2
, (2x− 1) tends towards a small positive number, so

lim
x→ 1

2

+

3x

2x− 1
= ∞.

Because the one-sided limits do not agree, we cannot assign ∞ or −∞ to the limit.
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(e) Direct substitution produces a 0
0
indeterminate form. This is a quasirational function,

so we use the rationalisation method:

lim
x→−4

√
x+ 8− 2

x+ 4
·
√
x+ 8 + 2√
x+ 8 + 2

= lim
x→−4

(x+ 8)− 4

(x+ 4)(
√
x+ 8 + 2)

= lim
x→−4

x+ 4

(x+ 4)(
√
x+ 8 + 2)

= lim
x→−4

1√
x+ 8 + 2

=
1

4
.

(f) Direct substitution produces a 0
0
indeterminate form, so we use the rationalisation

method:

lim
h→0

h2 − h√
h+ 3−

√
3
·
√
h+ 3 +

√
3√

h+ 3 +
√
3
= lim

h→0

h(h− 1)(
√
h+ 3 +

√
3)

(h+ 3)− 3

= lim
h→0

h(h− 1)(
√
h+ 3 +

√
3)

h

= lim
h→0

(h− 1)(
√
h+ 3 +

√
3)

= −2
√
3.

(g) In this case, we simply need to use direct substitution:

lim
x→3

x− 5√
2x+ 3 + 1

=
−2√
9 + 1

= −1

2
.

(h) Direct substitution produces a 0
0
indeterminate form. We can rid ourselves of the negative

exponent in the numerator by multiplying both the numerator and the denominator by
(x+ 1):

12(x+ 1)−1 − 2

x2 − 6x+ 5
=

12− 2(x+ 1)

(x+ 1)(x2 − 6x+ 5)
=

−2(x− 5)

(x+ 1)(x− 1)(x− 5)
.

Now the limit can be rewritten as

lim
x→5

12(x+ 1)−1 − 2

x2 − 6x+ 5
= lim

x→5

−2(x− 5)

(x+ 1)(x− 1)(x− 5)

= lim
x→5

−2

(x+ 1)(x− 1)
=

−2

24
= − 1

12
.

(i) Direct substitution yields a 0
0
indeterminate form. This function can be rewritten in the

manner of a normal rational function, which means that we can then use the cancellation
method:

lim
h→0

1
h2+9

− 1
9

h
= lim

h→0

9−(h2+9)
9(h2+9)

h
= lim

h→0

1

h
· −h2

9(h2 + 9)

= lim
h→0

−h

9(h2 + 9)
=

0

81
= 0.
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(j) Direct substitution produces a 0
0
indeterminate form. The presence of sine functions

suggests that we should use the special trigonometric limit. First let’s deal with the sine
function in the numerator. We need a factor of 8x in the denominator, so we write

lim
x→0

sin(8x)

sin(2x)
= lim

x→0

sin(8x)

8x
· 8x

sin(2x)
= lim

x→0

sin(8x)

8x
· lim
x→0

8x

sin(2x)

= 1 · lim
x→0

8x

sin(2x)
= lim

x→0

8x

sin(2x)
.

To deal with the remaining sine function, observe that we can factor 4 out of the numer-
ator to obtain a factor of 2x:

lim
x→0

sin(8x)

sin(2x)
= 4 lim

x→0

2x

sin(2x)
= 4 lim

x→0

1(
sin(2x)

2x

) = 4 · 1
1

= 4.

Alternatively, we could use the double-angle formula for sine to write

sin(8x) = 2 sin(4x) cos(4x) = 4 sin(2x) cos(2x) cos(4x),

so

lim
x→0

sin(8x)

sin(2x)
= lim

x→0

4 sin(2x) cos(2x) cos(4x)

sin(2x)

= 4 lim
x→0

cos(2x) cos(4x) = 4(1)(1) = 4

by direct substitution.

(k) Direct substitution yields a 0
0
indeterminate form, so we will use a special trigonometric

limit. Observe that

lim
x→0

1− cos2(x)

x
= lim

x→0

[1− cos(x)][1 + cos(x)]

x

= lim
x→0

1− cos(x)

x
· lim
x→0

[1 + cos(x)]

= 0 · 2 = 0.

(ℓ) Direct substitution produces a 0
0
indeterminate form. We can use the special trigono-

metric limit:

lim
x→0

sin(3x2)

x sin(x)
= lim

x→0

3x sin(3x2)

3x2 sin(x)
= lim

x→0
3 · x

sin(x)
· sin(3x

2)

3x2

= 3 lim
x→0

x

sin(x)
· lim
x→0

sin(3x2)

3x2
.

Observe that as x → 0, 3x2 → 0 as well, so

lim
x→0

sin(3x2)

x sin(x)
= 3(1)(1) = 3.
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(m) By direct substitution, we obtain

lim
x→π

tan
(
x
4

)
1− cos(x)

=
tan

(
π
4

)
1− cos(π)

=
1

1− (−1)
=

1

2
.

(n) Direct substitution produces a 0
0
indeterminate form. Because this problem involves

secant functions, we need to rewrite it in terms of other trigonometric functions if we’re
to use a special trigonometric limit. In particular, recall that sec(θ) = 1

cos(θ)
so we have

lim
θ→0

1− sec(θ)

θ sec(θ)
= lim

θ→0

1− 1
cos(θ)

θ
cos(θ)

= lim
θ→0

cos(θ)−1
cos(θ)

θ
cos(θ)

= lim
θ→0

cos(θ)− 1

θ
= 0.

(o) Observe that |x− 2| changes its definition at x = 2:

|x− 2| =
{

−(x− 2) if x < 2
x− 2 if x ≥ 2.

Thus we need to examine the one-sided limits. From the left,

lim
x→2−

|x− 2| − 2

x
= lim

x→2−

−(x− 2)− 2

x
= lim

x→2−

−x

x
= lim

x→2−
(−1) = −1.

From the right,

lim
x→2+

|x− 2| − 2

x
= lim

x→2+

(x− 2)− 2

x
= lim

x→2+

x− 4

x
=

−2

2
= −1.

Since the one-sided limits agree, we can conclude that

lim
x→2

|x− 2| − 2

x
= −1.

(p) Although x → −2, |x − 2| does not change its definition at x = −2, so we can just
substitute directly:

lim
x→−2

|x− 2| − 2

x
=

|−4| − 2

−2
= −1.

(q) We must check the one-sided limits, since |x| changes its definition at x = 0. For x < 0,
|x| = −x so we can write

lim
x→0−

x2 − 4x

7x− |x|
= lim

x→0−

x2 − 4x

7x− (−x)
= lim

x→0−

x2 − 4x

8x
= lim

x→0−

x− 4

8
= −1

2
.

For x > 0, |x| = x so we have

lim
x→0+

x2 − 4x

7x− |x|
= lim

x→0+

x2 − 4x

7x− x
= lim

x→0+

x2 − 4x

6x
= lim

x→0+

x− 4

6
= −2

3
.

Since the one-sided limits are not equal, we can conclude that the given limit does not
exist.
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2. (a) Since f(x) changes its definition at x = 1, we must check the one-sided limits. From the
left,

lim
x→1−

f(x) = lim
x→1−

(x2 + 3x+ 5) = 9.

From the right,
lim
x→1+

f(x) = lim
x→1+

(7x− 2) = 5.

Since these are not equal, lim
x→1

f(x) does not exist.

(b) Again, g(x) changes its definition at x = 1, so we must check the one-sided limits. From
the left,

lim
x→1−

g(x) = lim
x→1−

(x2 + 3x+ 5) = 9.

From the right,
lim
x→1+

g(x) = lim
x→1+

(7x+ 2) = 9.

Since the one-sided limits agree, we can conclude that lim
x→1

g(x) = 9 as well.

(c) This time, h(x) does not change its definition at x = 1, so we can simply write

lim
x→1

h(x) = lim
x→1

(7x− 2) = 5.

3. (a) We set the denominator equal to zero, so that

x3 + 3x2 − 9x+ 5 = (x+ 5)(x− 1)2 = 0.

Hence the only possible vertical asymptotes are x = −5 and x = 1.

When x = −5, the numerator is −54 ̸= 0, so we have a K
0
form. Hence x = −5 is a

vertical asymptote. From the left as x → −5, the denominator is a small negative
number, so given that the numerator is also negative,

lim
x→−5−

5x− 4− x2

x3 + 3x2 − 9x+ 5
= ∞.

From the right as x → −5, the denominator is a small positive number, so

lim
x→−5+

5x− 4− x2

x3 + 3x2 − 9x+ 5
= −∞.

When x = 1, however, the numerator is zero, so we have to take the limit using the
cancellation method:

lim
x→1

5x− 4− x2

x3 + 3x2 − 9x+ 5
= lim

x→1

−(x− 4)(x− 1)

(x+ 5)(x− 1)2
= lim

x→1

4− x

(x+ 5)(x− 1)
.

Now direct substitution produces a K
0

form (with K = 3) so x = 1 is a vertical

asymptote after all. From the left as x → 1, the denominator is a small negative
number, so

lim
x→1−

5x− 4− x2

x3 + 3x2 − 9x+ 5
= −∞.
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From the right as x → 1, the denominator is a small positive number, so

lim
x→1+

5x− 4− x2

x3 + 3x2 − 9x+ 5
= ∞.

(b) We set the denominator equal to zero, so that

5x− x2 − 4 = −(x− 4)(x− 1) = 0.

Hence the only possible vertical asymptotes are x = 4 and x = 1.

When x = 4, the numerator is 81 ̸= 0, so we have a K
0
form. Hence x = 4 is a vertical

asymptote. From the left as x → 4, the denominator is a small positive number, so

lim
x→4−

x3 + 3x2 − 9x+ 5

5x− 4− x2
= ∞.

From the right as x → 4, the denominator is a small negative number, so

lim
x→4+

x3 + 3x2 − 9x+ 5

5x− 4− x2
= −∞.

When x = 1, however, the numerator is zero, so we take the limit using the cancellation
method:

lim
x→1

x3 + 3x2 − 9x+ 5

5x− 4− x2
= lim

x→1

(x+ 5)(x− 1)2

−(x− 4)(x− 1)

= lim
x→1

(x+ 5)(x− 1)

4− x
= 0.

Because lim
x→1

f(x) exists, x = 1 is not a vertical asymptote.

4. Using the inequality, we can write

− cot(x) ≤ cot(x) sin

(
1

x

)
≤ cot(x)

if cot(x) > 0 or

− cot(x) ≥ cot(x) sin

(
1

x

)
≥ cot(x)

if cot(x) < 0. Furthermore,

lim
x→π

2

cot(x) = cot
(π
2

)
= 0 and lim

x→π
2

− cot(x) = − cot
(π
2

)
= 0.

Thus, by the Squeeze Theorem, we conclude that lim
x→π

2

cot(x) sin

(
1

x

)
= 0 as well.

(Note that if you’re not comfortable evaluating a cotangent directly, you can always use the

identity cot(x) =
cos(x)

sin(x)
. Here, for instance, cot

(π
2

)
=

cos
(
π
2

)
sin

(
π
2

) =
0

1
= 0.)
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5. We know that
−1 ≤ cos

( π

2x

)
≤ 1.

If we multiply all parts of the inequality by some x > 0, we get

−x ≤ x cos
( π

2x

)
≤ x.

On the other hand, if x < 0, the same multiplication flips the direction of the inequalities,
giving

x ≤ x cos
( π

2x

)
≤ −x.

We can combine these two cases if we recall that |x| = x for x > 0 and |x| = −x for x < 0.
Thus we have

−|x| ≤ x cos
( π

2x

)
≤ |x|.

We know that lim
x→0

|x| = 0 and so

lim
x→0

−|x| = − lim
x→0

|x| = 0

as well. By the Squeeze Theorem, then, we also have

lim
x→0

x cos
( π

2x

)
= 0.


