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[5] 1. By the limit definition,
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[7] 2. By the limit definition,
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At x = −3, the slope of the tangent line is
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2
√
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=
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2
.



The y-coordinate when x = −3 is

f(−3) =
√
−3 + 4 = 1.

Thus the equation of the tangent line has the form
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= b,

and so the equation of the tangent line is
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5

2
.

3.[4] (a) Note that
f(1) = 3(12)− 4(1) + 1 = 0.

We use the alternative definition of the derivative

f ′(1) = lim
x→1

f(x)− f(1)

x− 1
= lim
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= lim
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and consider the one-sided limits. From the left,
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From the right,
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Since the one-sided limits are equal, f ′(1) = 2 and so f(x) is differentiable at x = 1.



[4] (b) Note that
g(1) = 1− 1 = 0.

We again use the alternative definition of the derivative

g′(1) = lim
x→1

g(x)− g(1)

x− 1
= lim

x→1

g(x)− 0
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= lim
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and consider the one-sided limits. From the left,

lim
x→1−

g(x)

x− 1
= lim
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From the right,
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This time, the one-sided limits are not equal, and so g′(1) is not defined. Hence g(x) is
not differentiable at x = 1.


