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(1) liH(l] f(z) does not exist (because the one-sided limits do not agree)
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[5] 2. (a) Direct substitution yields a § indeterminate form, but we can rewrite the given limit as
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6] (b) Since f(x) changes its definition at + = —3, we must consider the one-sided limits. From
the left,

6x + 18

li = 1 .

Jm fle) = Tim o
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Direct substitution produces a § indeterminate form, so we apply the Cancellation

Method:
. : 6(z + 3)
Jm fr) = e e
= lim 0
r——3" —(CL’ — 3)
6
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From the right, direct substitution immediately provides

3—5 3—(—15
lim f(z) = lim - (=15) =
z——3+ a——3+ 9 + 22 9+9

Since the one-sided limits are equal, we can conclude that



5] (¢) Direct substitution yields a 2 indeterminate form, so we use the Rationalisation Method:
I r? — 2z 22 — 21 3r+ V722 +8
im

= lim .
e=223r —\/T2?2 +8 2223x — /722 +8 3x+ 722 +38
(22 — 22)(3x + V72?2 +8)

- alclil% 922 — Ta?2 — 8

i (2 — 22)(3x + V722 + 8)
T 222 — 8

_ lim z(x —2)(3x + V722 +8)

T2 2(x —2)(z + 2)
_ lim r(3x + V722 4+ 8)
a2 2(x +2)

2(6 + +/36)

a 2.4
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8] 3. We set

202 —5r+3=0

2z —3)(x—1)=0
so the possible vertical asymptotes are x = % and z = 1.
First we observe that f (%) = % 50 we must find out whether the limit exists in order to

0
determine if z = % is a vertical asymptote. By the Cancellation Method,
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Since the limit exists, x = 5 is not a vertical asymptote.

Next, f(1) = %, so x =1 is a vertical asymptote. Furthermore, we can observe that x — 1
is a small negative number when x — 1~ so

li = 1 = 00.
Jim f(z) = lim —— =00
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Likewise, x — 1 is a small positive number when z — 17 so

4. (a)

li = i = —00.
e e
This statement is false . We can write
x2—9 x—3)(x+3
fay =T =AY g o

r—3 r—3

only when z — 3 # 0, that is, when x # 3. In fact, f(3) is undefined (because it results
in division by zero) while g(3) = 6. Thus these functions are not equal.

This statement is true. Because f(z) and g(z) differ only at x = 3, and the limit as
xr — 3 is not affected by the behaviour of the functions at x = 3, their limits must be
equal. Indeed,

2 -9 (z = 3)(z + 3)

e =i Ty =Ty Tl =0

by the Cancellation Method, while

lim g(z) = lim(z +3) =6
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by direct substitution.



