
A study in the computation time required for

the inclusion of strain fi eld eff ects in

B loch-w av e simulations of T E M diff raction

contrast imag es

B . J . D ulong a, R . D . H aynesb, M . D . R ob ertsona∗

aDept. of Physics, Acadia University, Wolfville, NS, Canada B4P 2R6

bDept. of M athem atics and Statistics, Acadia University, Wolfville, NS, Canada B4P 2R6

May 4, 2007

A bstrac t

As transmission electron microscopy (TEM) imaging techniques continue to become

more quantitativ e, interpretation of the ex perimental images d emand s that accurate

image simulations be computed incorporating all important aspects of the image in-

clud ing: compositional, crystallographic and microscope eff ects, as w ell as contrast d ue

to strain fi eld s arising from stresses created by lattice misfi t or d efects. Incorporation

of the eff ects of strain fi eld s in the simulation of d iff raction-contrast TEM images in

the B loch-w av e formalism requires the integration of a system of fi rst-ord er d iff erential

equations in ord er to mod ify the ex citation amplitud es and prod uce contrast in the

image. This integration is computationally d emand ing w ith the time for integration

scaling as the cube of the number of beams includ ed in the calculation. In ord er to

inv estigate the computational requirements of the integration, a v ariety of numerical in-

tegration pack ages w as ev aluated w ith respect to timing and accuracy in the simulation

of quantum d ot, spherical inclusion and screw d islocation images. It w as d etermined

∗C orrespond ing author. Tel.: + 1 9 0 2 5 8 5 1 3 1 8 ; fax : + 1 9 0 2 5 8 5 -1 8 1 6 .
E – m ail address: michael.robertson@ acad iau.ca.

1

* Manuscript

that a class of Adams-multistep methods can provide a decrease in computation time

ranging from 2-4 as compared to the standard R unge– K utta(4)5 approach depending

on the simulation conditions.

PACS: 61.14.Dc; 61.14.Dc; 02.60.Jh; 81.07.Bc

K ey w o rd s: T ran sm issio n e lectro n m icro sco p y; C o m p u te r m o d e lin g an d sim u latio n ; S train

fi e ld ; N u m e rical in te g ratio n ; Diff ractio n co n trast

1 Introduction

In o rd e r to e x tract q u an titativ e in fo rm atio n fro m d iff ractio n co n trast im ag e s in a tran sm issio n

e lectro n m icro sco p e (T E M) accu rate sim u latio n o f the e x p e rim e n tally o b tain e d im ag e s is

o fte n re q u ire d . T he tw o m ain ap p ro aches to T E M im ag e sim u latio n are the Blo ch– w av e

[1– 3] an d m u ltislice [4– 6] fo rm alism s, an d in the case o f im ag e s co n tain in g strain fi e ld s at

lo w to m e d iu m m ag n ifi catio n s, the Blo ch– w av e ap p ro ach is u su ally the m e tho d o f cho ice .

A p p licatio n s w he re the Blo ch-w av e ap p ro ach hav e b e e n ap p lie d to the q u an titativ e an alysis

o f strain fi e ld s in d iff ractio n co n trast im ag e s in clu d e : the classic w o rk b y A shb y an d Bro w n

o n sp he rically sym m e trical co he re n cy strain s an d in clu sio n s [7,8], in d iv id u al an d in te ractin g

d islo catio n s [9], co here n t sp hero id al p article s [10], crack – shap e d cav itie s in S i [11], an tip hase

b o u n d arie s in G aP [12] an d In A s q u an tu m d o ts in In P [13].

T he in te n sity o f a d iff racte d b eam as calcu late d u sin g the Blo ch– w av e ap p ro ach is g iv e n

b y

Ig(z) =

∣

∣

∣

∣

∣

∑

j

α(j)(z)C(j)
g e x p (2π ik(j)

z z)

∣

∣

∣

∣

∣

2

(1)

w here z is the thick n e ss o f the crystal, kj
z is the w av e v ecto r o f the e lectro n in sid e the crystal

fo r the jth Blo ch w av e , C
(j)
g are the Blo ch– w av e co e ffi cie n ts, an d α(j)(z) is the e x citatio n

am p litu d e o f the jth Blo ch w av e . T he in co rp o ratio n o f strain e ff ects in the im ag e in te n sitie s

is acco m p lishe d b y in te g ratin g the e x citatio n am p litu d e s o v e r the d isp lace m e n t fi e ld , R(z),

in the d irectio n o f the e lectro n b eam an d re q u ire s the so lu tio n o f the fo llo w in g se t o f co u p le d

2

first–order differential equations [1],

dα(j)(z)

dz
= 2πi

∑

i

α(i)(z) exp[2πi(k(i)
z − k(j)

z)z]
∑

g

C∗(j)
g C(i)

g

d

dz
(g ·R(z))

− 2πq(j)α(j)(z).

(2)

In these equations q(j) is the imaginary part of the wavevector for the jth Bloch wave and

g is the reciprocal lattice vector. F or any non–trivial displacement field, the solution to the

above set of equations cannot be determined analytically and numerical approaches must be

used.

The time required to calculate image intensities in the Bloch-wave approach is largely

governed by two factors: the matrix diagonalization required to determine k
(j)
z and C

(i)
g , and

the integration of equation (2). The amount of computation time for the matrix diagonal-

ization step scales as n2 where n is the number of beams included in the calculation and

efficient linear algebra codes exist to perform this operation [15]. Similarly, the integration

of the excitation amplitudes is an order n3 process (cf. Section 4) and the time required for

the calculation of TEM image intensities is dominated by this step, especially for large n.

The integration of the system of equations given in (2) has usually been accomplished by

R unge–K utta methods [10–13]. In particular, the fourth–order R unge–K utta 4(5) method is

a common implementation of the technique offering very good numerical stability as well as

allowing the user the ability to specify a maximum error tolerance per step (EPS). H owever,

R unge–K utta 4(5) was developed as a reliable, general–purpose integration package and may

or may not be the most time efficient technique for solving equation (2). The reason why

computation time becomes important is the need for quantitative simulations that accurately

portray the experimental system under investigation. Depending on the particular crystal

orientation being modeled, a large number of refl ections could be excited by the electron

beam and hence the simulation of even a small 128×128 pixel image could take many hours,

days or weeks. F or example, F ig. 1 is a plot of the bright-field image intensity for 5 0 nm of

3

unstrained InP crystal at the [001] zone–axis orientation including and excluding the effects

of absorption. The intensity in both cases initially increases to a maximum at 49 beams

and then monotonically decreases as the number of beams is increased beyond this point.

This effect was caused by the effective extinction distance decreasing with an increase in the

number of beams included in the calculation. W hen the calculation was performed with only

9 beams, the specimen thickness required to observe a maximum in the first bright thickness

fringe (apart from the maximum at 0 nm) was about 60 nm which decreased to about 50

nm for 49 beams and 44 nm for 381 beams. Since the specimen thickness where a maximum

in the thickness fringe intensity transitioned from above to below the target thickness of 50

nm due to reduced effective extinction distance values, the simulated intensity goes through

a maximum as the number of beams is increased. It is observed that over 100 beams are

required in order for the image intensity to converge to a stable value which can lead to very

long calculation times. As a means of comparison, even if the n = 100 calculation took only

one second to compute without strain for a single point, a 128×128 pixel image including the

effects of strain might require over 450 hours to compute using a modern personal computer.

Since the time required for integration of the excitation amplitudes can dominate the

total computation time for images containing strain for even small n, the objective of this

research was to investigate a variety of integration schemes in order to determine the fastest

methods for a given accuracy. Although computer processors continue to increase in speed

and parallel computing methods can greatly reduce the time required to simulate images,

efficiencies in numerical algorithms should continue to be sought to maximize the scale of

simulation that can be performed in a reasonable amount of time with a given technology.

In the following sections, we will (1) discuss the three strain fields analyzed, (2) provide a

brief survey of the numerical approaches used,)3) examine the mathematical properties of

equation (2), (4) give a discussion of the timing results and (4) provide a recommendation

for the numerical integration approach most suited to the three cases investigated.

4

2 Simulation Method

The various integration routines were tested on three model strain fields. First, the 3.2%

lattice misfit strain contrast arising from an InAs quantum dot in an InP matrix was studied.

The dot was 25 nm in diameter, 2.0 nm in height and there was a 0.5 nm thick InAs wetting

layer underneath the Q D as shown in Fig. 2. The Q D was located in the middle of a

50 nm × 50 nm × 50 nm cube of InP and the anisotropic elastic fields were solved by finite

element methods. Different anisotropic elastic parameters were used for InAs and InP [16]

and the displacement fields were output to a discrete 128×128×401 point array. Each column

of 401 points in the z direction was fit to a spline curve in order that the displacement fields,

or their derivatives, could be calculated at any location within the specimen. Complete

details of the Q D system and finite-element method can be found in Robertson et al. [13].

The second model strain field evaluated was a 25 nm spherical InAs inclusion located

within the centre of a 50 nm × 50 nm × 50 nm InP matrix. The displacement field was

evaluated analytically in the isotropic approximation using [7, 17]

R = Cr r ≤ r0,

R = C
r3
0

r3
r r ≥ r0,

(3)

where r0 is the radius of the spherical inclusion and C is a parameter dependent upon the

isotropic elastic constants. This model was chosen so that the numerical methods could be

tested on an analytic displacement field in addition to the discretely calculated elastic field

of the first example.

The last strain field considered was that due to a screw dislocation in InP using isotropic

elasticity theory. Dislocations can have large displacement fields near their core and demand

that any integration routine used to solve equation (2) be able to accommodate widely varying

magnitudes of the displacement fields. The screw dislocation was located midway through

5

the thickness of the crystal and the displacement field was expressed as [17, 18]

R =
b

2π
tan−1

(

z − zd

x

)

, (4)

where b = 1/2[110] is the Burgers vector of the screw dislocation, z is the depth in the crystal,

zd is the depth of the dislocation (i.e. 25 nm) in the 50 nm × 50 nm × 50 nm InP matrix,

and x is the radial distance from the core of the dislocation.

All of the Bloch-wave simulations included the effects of absorption through the inclusion

of a complex term in the atomic form factor as per Bird and King [19] and Bird [20]. The

Debye-Waller factors were those given by Reid [21] for a temperature of 300 K. All of the sim-

ulations, except where otherwise indicated, were performed at the [001] zone-axis orientation

and the thickness of the specimen was 50 nm.

The Bloch-wave image simulation code was written by the authors except for (1) sub-

routine ATO M used to calculate the atomic form factors [19], (2) the matrix diagonalization

and inverse routines as supplied by the LAPACK project [15] and (3) the integration rou-

tines used were obtained from either N u m erica l R ecipes [22] or the N etlib repository [23].

It should be noted that this implementation of the Bloch-wave theory has used the stan-

dard assumptions and approximations including (1) the column approximation, (2) the finite

number-of-beams approximation, (3) the high-energy approximation, (4) the deformable-ion

approximation, (5) elastic-scattering approximation and (6) the phenomenological treatment

of absorption by means of a complex atomic potential. The Bloch-wave theory and the ap-

plication of these approximations have been rigorously reported in the literature and will not

be repeated here [1–3,14]. The simulations were performed using a single node of a 50–node

Beowulf cluster where each node contained a 64–bit AMD O perton processor operating at a

clock speed of 1.4 GHz with 4 GB of RAM.

Two different timing evaluations were performed. The main timing trials involved the

simulation of a 128×128 pixel image where the pixels were decoupled from one another using

the column approximation. When it was desired to observe the behaviour of a particular

6

integration routine as a function of distance in the specimen, z, a calculation was performed

on a single column located at the edge of the QD where the elastic displacement fields in the

x and y directions are equal and of the greatest magnitude as shown in Fig. 3.

3 Numerical Approaches

Presented in this section is a brief description of the numerical approaches studied for the

integration of the excitation amplitudes given in equation (2). A complete overview of nu-

merical methods for the solution of ordinary differential equations is beyond the scope of

this study and the reader is directed to two general references for more detailed informa-

tion [24, 25]. In the numerical integration literature, the independent integration parameter

is usually referred to as time whereas in electron microscopy the integration is performed

over distance, z.

3.1 Definitions

Equation (2) is a system of first–order coupled differential equations that can be written

more generally as

y′ = f(z, y), (5)

and all of the numerical solvers investigated herein have been designed to solve equations of

this form. As a point of nomenclature, numerical integration routines are often referred to

as either explicit or implicit and the integrations defined as possessing either stiff or non-stiff

properties. In explicit integration routines, the value of the integral at a position n, yn, only

depends on the previous values of y, i.e. yn−1, yn−2, etc. For example, the simple forward

Euler method is given by

yn = yn−1 + h f(zn−1, yn−1), (6)

7

where h is the size of the step and zn = zn−1 + h. Hence, the forward Euler method is

an explicit solver since the current value of the parameter depends only on data from the

previous points. Conversely, the backward Euler method is an example of an implicit solver

since the current value depends on a function of the current value itself as shown below

yn = yn−1 + hf(zn, yn). (7)

Stiffness is a term more difficult to define. It may be thought of as a phenomenon

which may emerge as one numerically solves systems of differential equations. Several factors

combine to determine if a problem presents itself as being stiff including (1) features of

the differential equation itself, (2) the user specified error tolerance and (3) the length of the

integration interval. In physical models stiffness may occur when a system models interrelated

phenomena which proceed on very different time scales [26]. A problem is considered stiff if

the step size of an explicit method is restricted to small values in order to maintain stability of

the calculation when accuracy requirements alone would allow for larger step sizes. Explicit

methods are easily evaluated at each step, however, when solving a stiff problem the increased

number of steps required by an explicit method can outweigh the total cost associated with an

implicit method. In fact, a functional definition of stiffness is that an implicit method solves

a stiff problem more efficiently than an explicit method. In addition, evidence for stiffness

may also be provided by the eigenvalues of the Jacobian of the right hand side function f(t, y)

(cf. [27]). The problem is stiff if

h ·minj(R e(λj)) � −1, (8)

where λj denote the eigenvalues of the Jacobian.

8

3.2 Runge Kutta

In general, a Runge–Kutta method to solve a system of differential equations (5) can be

written as

yn = yn−1 + h
s

∑

i= 1

bif(zn−1 + cih,Yi), (9)

where s is the number of intermediate stages, yn−1 and yn denote approximate solutions at

positions zn−1 and zn = zn−1 + h, respectively. Yi is a local intermediate solution evaluated

at position zn−1 + cih and is given by

Yi = yn−1 + h

s
∑

j= 1

aijf(zn−1 + cjh,Yj), 1 ≤ i ≤ s. (10)

Runge–Kutta methods are commonly referred to as one–step methods since the solution at

position zn is found only from the solution at the previous step zn−1.

Runge–Kutta routines can be written in a convenient shorthand notation

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

known as a Butcher array or tableau. For example, the Butcher array

0 0

1

denotes the popular forward Euler method given by equation (6). U nder relatively mild

assumptions on the vector valued function f , it can be shown that the error in the forward

Euler approximation satisfies

|y(zn)− yn| ≤ Ch as h → 0.

9

We say the forward Euler approximation is a first order method. Generally, a method is

order p if the error is bounded by Chp for some constant C as h → 0.

One can develop higher order methods by increasing the number of intermediate stages,

s, and choosing appropriate coefficients in the Butcher array. For instance the Cash-Karp

tableau

0

1
5

1
5

3
10

3
40

9
40

3
5

3
10

−9
10

6
5

1 −11
54

5
2

−70
27

35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378

0 250
621

125
594

0 512
1771

2825
27648

0 18575
48384

13525
55296

277
14336

1
4

defines a particularly efficient embedded Runge–Kutta 4(5) pair. These parameters generate

both a fourth and fifth order approximation using a total of only six function evaluations. The

difference between the two approximations allows for an efficient estimation of the method’s

error per step and an adaptive step size selection procedure.

Runge Kutta schemes have successfully been used to solve equation (2) in [11–13,28] and

thus provides the benchmark for our simulations.

3.3 Bulirsch-Stöer

A popular approach to obtain high accuracy solutions to ordinary differential equations is the

extrapolation technique due to Bulirsch and Stöer [29]. Extrapolation methods (cf. [25]) pro-

vide another way to obtain high order one–step methods and have been successfully applied

to the solution of equation (2) in [10]. This class of methods apply a relatively low–order

one–step Runge–Kutta method to a problem using a fixed sequence of sub–steps. Certain

combinations of these approximations can be combined to obtain approximate solutions of in-

10

creasing order. The Bulirsch-Stöer method makes repeated use of the Runge–Kutta midpoint

method with tableau

0 0 0

1/2 1/2 0

0 1

.

Essentially, the solution is propagated from zn to zn+1 = zn+h by using certain combina-

tions of nj modified midpoint steps of size hj = h/nj where the njs are chosen from some fixed

list. Bulirsch and Stöer originally suggested nj ∈ {2, 4, 6, 8, 12, 16, . . .} while later Deuflhard

[30] proposed a more efficient sequence of approximations based on nj ∈ {2, 4, 6, 8, 10, 14, . . .}.

The result is a sequence y
nj

n+1 of approximations to yn+1. These approximations are combined

using either polynomial or rational extrapolation to obtain successively higher order approx-

imations until the user supplied error tolerance is met.

3.4 Linear Multistep

The methods of the previous two sections are classified as one–step methods. That is, the

solution at position zn is determined only using the approximation obtained at position zn−1.

Intermediate solution approximations, obtained via additional function evaluations, are used

to obtain higher order approximations. L inear multistep methods use an alternate approach

where the solution and/ or derivative approximations from previous step positions are used

to generate a high–order approximation, often without any additional function evaluations.

The general class of k–step linear multistep methods may be written as

yn =
k

∑

j=1

αjyn−j + hn

k
∑

j=0

βjf(zn−j, yn−j). (11)

L inear multistep methods are typically classified as either Adams methods, choosing

α1 = 1, αj = 0 (j = 2, . . . , k), or Backward Differentiation Formulae (BDF methods) which

satisfy β0 = 0, βj = 0 (j = 1, . . . , k). Since β0 = 0 the BDF methods are necessarily implicit as

yn appears on both sides of (11). Implicit schemes require the additional cost of a nonlinear

11

system solve at each step and the nonlinear equations are solved by either a fixed point

iteration or some variant of Newton’s method.

Adams methods are either explicit (if β0 = 0) or implicit (if β0 = 0). Explicit Adams

methods are referred to as Adams–Bashforth methods while implicit Adams methods are

known as Adams–Moulton methods. Although explicit schemes are less costly per step,

implicit formulations have the advantage of allowing much larger steps for certain classes of

problems [31].

Often explicit methods are used in combination with implicit Adams methods as a

predictor–corrector pair (PECE). The explicit formula is used to provide an approxima-

tion to yn for use on the right–hand side of the implicit scheme. The implicit scheme is used

to correct the predictor provided by the explicit method.

3.5 Software

Table 1 summarizes the methods and particular codes compared in this work. Specifically,

the table provides the subroutine name, the type of method as classified above, the library

in which the subroutine may be found, and if the code is appropriate for stiff or non–stiff

problems.

The Runge–Kutta routines from Numerical Recipes [22] and from Netlib, RKSUITE [23],

provided the benchmark for our simulations. In order to test the Bulirsch–Stöer approach we

used the routine BSSTEP from Numerical Recipes [22]. The remainder of the codes identified

in Table 1 provided various multi–step methods and were obtained from the ode, slatec and

odepack packages contained within the Netlib repository [23].

One of the inherent difficulties with multi-step methods is the handling of variable step–

size implementations. The goal of modern ordinary differential equation solvers is to compute

the solution over the distance interval of interest as efficiently as possible while ensuring the

solution is accurate within the user supplied error tolerance. In order to achieve this, the

step size, hn = zn − zn−1, is allowed to vary. The step, hn, is automatically chosen small in

12

regions where the solution is particularly difficult and large when the solution is relatively

easy to track.

The slatec [23] and odepack [23] libraries provided multistep methods via the codes sdriv

[26] and SLSODE [31], respectively. Both allowed the choice of explicit or implicit solvers

through the specification of user supplied parameters (MINT and MF). These libraries have

different capabilities, for example, they offered different implementations of variable stepping

strategies. Details of these implementations may be found in the references above and in [32].

The slatec libraries provided a version of sdriv, cdriv, which was particularly suited to

handle problems involving complex data types. This was useful for the system of differential

equations defined in (2). Most ordinary differential equation solvers required real valued data

and hence the system needed to be recast in real form by writing each unknown function

α(j)(z) as α
(j)
R (z)+ iα

(j)
I (z) where the α

(j)
R and α

(j)
I were real valued functions. This effectively

doubled the dimension of the system and may be an issue for implicit methods which require

linear solves at each step involving the Jacobian matrix. Complex arithmetic, however, is

often more costly (per operation) than real arithmetic1. It is difficult to say a priori if routines

which allow complex data types will out–perform real valued solution methods.

4 Examination of the System of Ordinary Differential

Equations

Computationally, the most expensive component in a single step of a numerical integration

method for systems of ordinary differential equations are the evaluations of the right–hand

side function of (5), f(t, y). Each function evaluation for integration of the excitation ampli-

tudes requires an evaluation of the right hand side of equation (2), and hence, the evaluation

of three nested summations. Thus, the total cost of the function call scales as the cube of

the number of diffracted beams included in the calculation. For example, for the integration

1The relative cost will depend highly on computer hardware and compiler optimizations.

13

located at the single point highlighted in Fig. 2 and only 11 beams, function calls to eval-

uate equation (2) accounted for approximately 90% of the total computation time for the

Runge-Kutta 4(5) solver. Increasing the number of beams to 21 resulted in approximately

98% of the total computation time being spent performing function evaluations. Therefore,

any numerical solver that minimizes the total number of function calls compared to the other

solvers has a significant advantage in terms of the total calculation time required to form the

image.

Another important aspect investigated with this system of ordinary differential equations

was whether they displayed any degree of stiffness during the calculation. For example, if the

presence of stiffness is dependent on the magnitude of the elastic displacements then a solver

that can switch between stiff and non-stiff integration strategies might be more efficient than

a single solver that has been configured to solve either stiff or non-stiff problems. As discussed

in Section 3.1 and expressed mathematically by equation (8), a problem is considered stiff

if the minimum eigenvalue of the Jacobian of equation (2) is much less than −1. Fig. 4 is

a plot of the imaginary vs. real components of the eigenvalues of the Jacobian matrix for

an integration at a single point for three locations along the integration. The calculation

was performed along the [111] zone-axis orientation for 31 beams. The left and right plots

correspond to the InP matrix above and below the quantum dot, respectively, and the centre

plot was obtained at the centre of the quantum dot. In addition, a plot of the derivative

of the elastic displacement field is provided to show more clearly the dependence of the

eigenvalues on the elastic fields. Recall that it is the derivative of the elastic displacement

field with respect to the direction of the electron propagation, z, that scales the changes in

excitation amplitude in equation (2). It is observed that the minimum real eigenvalue is only

about -0.002 which, considering the length of integration, does not satisfy the requirement

for stiffness. However, one interesting phenomena that occurred was the expansion of the

eigenvalues along the imaginary axis suggesting that the solutions become more oscillatory

in regions where the gradient in the displacement field was large. As a further confirmation

14

of the lack of stiffness present in equation (2), the exercise was repeated for larger numbers

of beams and greater elastic strains. It was found that the distribution in eigenvalues did

not change significantly when up to 91 beams were included in the calculation or when the

lattice misfit between the quantum dot and the matrix was increased by 4 times up to 13.2%.

The presence of stiffness can also be observed if stiff solvers can perform the integration

faster than non-stiff solvers and Table 2 compares the CPU time required to solve equation

(2) using stiff and non–stiff solvers with various user supplied tolerances. The simulation

conditions were the same as those discussed in the previous paragraph except for the choice

of solvers. All of the timing values quoted were an average of 10 runs. The writing of the

code and its compilation were optimized for speed and the reported results were obtained

within the specified tolerance. The local error within each code was kept within the specified

tolerance by adjusting the step size, h. Although there are standard approaches for estimating

the local error, the implementation selected by the writer of the code can vary between codes

which makes comparing the computation time required to achieve a set tolerance difficult

for different codes. However, the local error control for two codes, cdriv and lsode, was

calculated in a consistent manner for both the stiff and non-stiff settings of the code and the

timing results for these two solvers are provided in Table 2. The simulations were performed

for a single point at the location highlighted in Fig. 3 for 21 beams at the [001] zone-axis

orientation. At every tolerance value, the non-stiff solver was able to perform the integration

in about 75% of the time of the stiff solvers indicating that the non–stiff methods solve the

integration problem more efficiently.

It should be noted that the problem did not display any stiffness for any of the conditions

investigated, implying that non-stiff solvers, which are more efficient computationally, can

be safely used.

15

5 Timing Results and Discussion

In this section the computation time of a 128 × 128 pixel image using one–step and mul-

tistep methods, as well as stiff and non–stiff solvers is compared. Full image simulations

were obtained at the [001] zone–axis orientation for a truncated InAs quantum dot in InP, a

spherical InAs inclusion in InP, and a screw dislocation in InP as discussed in Section 2. All

simulations were performed with 21 beams over a range of error tolerances. It is recognized

that many factors can influence the computation time required to generate a simulated image

including (1) the error tolerance, (2) the number of diffracted beams included in the calcu-

lation and (3) the magnitude of the gradients of the elastic displacement field. V ariations of

these 3 parameters were considered. A short selection of results, representative of the large

dataset generated by this parametric study, is presented here.

In order to ensure that the timing results could be compared at equivalent levels of

accuracy, a reference image was computed. This was necessitated since different integration

routines perform the local error control in different ways and relying on equivalent EPS

values for each routine would not be possible. However, an absolute comparison can be made

by comparing all of the simulations to a single reference image. The reference image was

obtained by setting the user supplied error tolerance for the Runge–Kutta (4)5 integration

routine close to the lowest value permitted for single-precision arithmetic, 2 × 10−8. The

computed images were then compared to this reference image by assigning a numerical value

which represented the Distance between the images. Distance between images is calculated

as the sum, over all pixels in the image, of the magnitude of the difference between a given

image’s pixel intensity and the corresponding pixel intensity of the reference image, i.e.

Distance =

#pixels
∑

j=1

∣

∣

∣
Ij − I r ef

j

∣

∣

∣
, (12)

where j is the index of pixels in the image,and Ij and I r ef
j denote the intensity of the jth

pixel in the simulated and reference images, respectively. Another way to define Distance

16

is as the modulus of the difference between the simulated and reference image. A plot of

the computation time as a function of Distance gives the required time for each numerical

method to obtain an approximate image within a specified accuracy of the reference image.

The concept of Distance can be illustrated by comparing simulation quality as a function

of the magnitude of the Distance value. Fig. 5 presents a series of quantum dot simulations

calculated using the Runge–Kutta(4)5 method for nine different Distance values ranging from

1 to 225000. The images have been individually scaled so that black represents an intensity

of 0 and white an intensity of 255. Visually, the image quality appears to have converged

by Fig. 5e with a Distance value of 380. This indicates that qualitatively acceptable images

can be obtained at larger Distance values, and hence less computation time, than the one

derived from the image necessary for quantitative work.

Figures 6–8 show the computation time as a function of Distance for the quantum dot,

spherical inclusion and screw dislocation, respectively. It is observed that the standard

Runge–Kutta technique was not the fastest nor slowest technique, but performed about

average when compared to all of the other techniques. If the accuracies are limited to

Distance values of about 400 and less, the regime for acceptable quantitative and qualitative

work, the fastest technique in all three cases was the Adams-multistep routine, SLSODE,

from the odepack package of the Netlib repository. When compared to the Runge-Kutta(4)5

routine, the Adams-multistep method was consistently 2 to 4 times faster to simulate the

image.

The Adams-multistep method was developed to integrate non-stiff systems as shown in

Table 2 and its exceptional performance is consistent with the non-stiff properties of the

system of differential equations given by (2) and discussed in Section 4. Fig. 9 shows

the computation time required to simulate a 128 128 pixel image of a quantum dot as a

function of the number of times equation (2) was evaluated for 5 of the non-stiff solvers at

a Distance of 350. As mentioned previously, the computation time required to simulate the

image is linearly proportional to the number of function calls, which is consistent with the

17

results presented in Section 4 where about 98% of the total computation time for an image

simulation incorporating 21 beams is due to function calls. Thus, the key to the success of

the Adams-multistep method is that it requires fewer function calls than other methods in

order to achieve a given accuracy.

6 Conclusions

TEM images of defects using diffraction contrast were simulated using the Bloch-wave method,

whereby the excitation amplitudes were formulated as a system of first-order coupled differ-

ential equations that were scaled by the gradient of the elastic displacement field in the

direction of the electron beam. There was one differential equation for each beam included

in the simulation and the time required for the integration increased as the cube of the num-

ber of beams. Various integration methods were investigated. Three different strain systems

were used as test cases, an InAs quantum dot in InP, an InAs spherical inclusion in InP and

a screw dislocation in InP.

It appeared that the integration required about 90% of the total simulation time for 11

beams, a percentage that increased with the number of beams included in the calculation.

The system of differential equations for the excitation parameters did not display any stiffness

over the range of conditions investigated.

The Adams-multistep method as implemented in the SLSODE routines provided the

shortest computation times for all three test cases. It was 2 to 4 times faster than the

Runge-Kutta(4)5 method. The success of the Adams-multistep method was due to it being

the only non-stiff solver out of all of the methods investigated, which required the fewest

number of function evaluations in the integration.

18

7 Acknowledgments

The authors gratefully acknowledge the support provided by the Natural Sciences and En-

gineering Research Council of Canada and one of the authors (MR) wishes to acknowledge

the support of the Canada Research Chairs Program.

19

References

[1] C.J. Humphreys, The scattering of fast electrons by crystals, Rep. Prog. Phys.,

Vol. 42, University of Oxford, 1979.

[2] L. Reimer, Transmission Electron Microscopy - Physics of Image Formation

and Microanalysis, Springer–Verlag, New Y ork, third edition, 1993.

[3] A. J. F. Metherell, Electron Microscopy in Materials Science, Third Course of

the International School of Electron Microscopy, Commission of Euro Commu-

nities, Directorate General, Scientific and Technical Information, Luxenbourg,

1975.

[4] E. J. Kirkland, Advanced Computing in Electron Microscopy, Plenum Press,

New Y ork, 1998.

[5] J. M. Cowley and A. F. Moodie, Acta Cryst. 10 (1957) 609.

[6] P. Goodman and A. F. Moodie, Acta Cryst. A30 (1974) 280.

[7] M. F. Ashby and L. M. Brown, Phil. Mag. 8 (1963) 1083.

[8] M. F. Ashby and L. M. Brown, Phil. Mag. 8 (1963) 1649.

[9] A. K. Head, P. Humble, M. Clarebrough, A. J. Morton and C. T. Forwood, De-

fects in Crystalline Solids - Computed Micrographs and Defect Identification,

Vol. 7, North Holland Publishing Company, Amsterdam, 1973.

[10] K. G. F. Janssens, O. Van der Biest, J. Vanhellemont and H. E. Maes, Ultra-

microscopy 69 (1997) 151.

[11] K. Tillmann, N. Hüging, H. Trinkaus and M. Luysberg, Microscopy and Mi-

croanalysis 10 (2004) 199.

[12] D. Cohen and C. B. Carter, J. Micros. 208 (2002) 84.

20

[13] M. D. Robertson, J. C. Bennett, A. M. Webb, J. M. Corbett, S. Raymond and

P. J. Poole, Ultramicroscopy 103 (2005) 205.

[14] P. Hirsch, A. Howie, R. Nicholson, D. W. Pashley and M. J. Whelan, Electron

Microscopy of Thin Crystals, Krieger Publishing Company, Malabar, FL, 1977.

[15] The LAPACK project. LAPACK–Linear Algebra PACKage,

http://www.netlib.org/lapack.

[16] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, Band parameters for III-V

compound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815.

[17] D. B. Williams and C. B. Carter, Transmission Electron Microscopy, Plenum,

New York, 1996.

[18] J. P. Hirth and J. Lothe, Theory of Dislocations 2nd Edition, Krieger Publish-

ing Company, Malabar, FL, 1992.

[19] D. M. Bird and Q. A. King, Acta Cryst. A46 (1990) 202.

[20] D. M. Bird, Acta Cryst. A46 (1990) 208.

[21] J. S. Reid, Acta Cryst. A39 (1983) 13.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, NU-

MERICAL RECIPES in Fortran 77, Second Edition, The Art of Scientific

Computing, Cambridge University Press, Cambridge, 1986.

[23] The Netlib repository, http://www.netlib.org/.

[24] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equa-

tions I: Nonstiff Problems, Springer–Verlag, New York, second edition, 1993.

21

[25] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems, Springer–Verlag, New York, second edition,

2004.

[26] D. Kahaner, C. Moler and S. Nash, Numerical Methods and Software, Prentice-

Hall Inc., New Jersey, 1989.

[27] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differen-

tial Equations and Differential-Algebraic Equations, Society for Industrial and

Applied Mathematics, Philadelphia, 1998.

[28] Y. Androussi, Phil. Mag. Lett. 79 (1999) 201.

[29] R. Bulirsch and J. Stöer, Numerical treatment of ordinary differential equations

by extrapolation methods, Numer. Math. 8 (1966) 1.

[30] P. Deuflhard, Order and Stepsize Control in Extrapolation Methods, Numer.

Math. 41 (1983) 399.

[31] K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE the

Livermore Solver for Ordinary Differential Equations, Lawrence Livermore Na-

tional Laboratory Report UCRL-ID-113855, Livermore, CA, 1993.

[32] J. D. Lambert, Numerical methods for ordinary differential equations, Wiley,

Chichester, 1991.

22

Code Name Nu merical M eth od S tiff Non -S tiff P ack ag e

odein t R u n g e K u tta 4(5) � Num. Rec.
rk suite Run g e K utta 2 (3), 4 (5), 7 (8) � o d e
D E A B M A d ams P E C E � sla tec
B S S T E P B ulirsch -S to er � Num. Rec.
sd a sk r B D F � o d e
sd riv 2

(M INT = 1) A d ams M ulti-S tep � sla tec
cd riv 2

(M INT = 1) A d ams M ulti-S tep � sla tec
(M INT = 2 , M IT E R = 1) B D F � sla tec
(M INT = 2 , M IT E R = 2) B D F � sla tec
(M INT = 3) B D F / A d ams M ulti-V a lue � � sla tec

S L S O D E
(M F = 1 0) A d ams M ulti-S tep � o d ep a ck
(M F = 2 0) B D F � o d ep a ck
(M F = 2 1) B D F � o d ep a ck

sv o d e
(M F = 1 0) A d ams M ulti-S tep � o d e

Table 1: Summary of software tested. MINT, MITER and MF are user supplied settings for

confi guring th e integration routine to operate in a particular manner. MINT was a software

switch to allow th e user to control wh eth er a stiff or non-stiff meth od was to be used in th e

integration procedure. MITER = 1 allowed a user defi ned J acobian to be ev aluated wh ereas

MITER = 2 set th e option for a numerically ev aluated J acobian. Similarly, MF = 2 0 and 2 1

refer to user defi ned and numerically calculated J acobians, respectiv ely.

2 3

CDRIV L S O DE
T o le ra n c e A d a m s (N o n – S tiff) B DF (S tiff) A d a m s (N o n -S tiff) B DF (S tiff)

0 .1 0 .2 0 3 5 0 .2 5 3 3 0 .0 8 5 9 4 0 .1 1 9 4 7
0 .0 1 0 .3 1 0 9 0 .4 0 0 4 0 .0 9 3 7 5 0 .1 5 0 0 7
0 .0 0 1 0 .5 5 3 3 0 .6 7 0 1 0 .1 1 0 6 8 0 .1 4 3 8 8
0 .0 0 0 1 0 .8 6 2 1 0 .9 7 6 6 0 .1 7 9 6 9 0 .2 3 9 9 1
0 .0 0 0 0 1 1 .1 2 5 8 1 .3 9 0 1 0 .3 0 9 9 0 0 .4 1 0 1 6

Table 2: Comparison of computation times (seconds) as a function of user supplied tolerance
for two stiff and non– stiff solvers. The timing results were from an average of 10 runs at a
single point as highlighted in Fig. 3. The calculations were performed for 21 beams at the
[001] zone-ax is orientation.

24

Figure 1: The bright–field intensity of 50 nm of unstrained InP in the [001] zone–axis orien-
tation plotted as a function of the number of beams used in the calculation.

25

Figure 2: The cross sectional geometry of the InAs (black) quantum dot and wetting layer
in the InP matrix (grey). The full width of the image is 50 nm.

26

Figure 3: The magnitude of the total atomic displacements, RT =
√

R2
x + R2

y, due to the
lattice misfit between the InAs quantum dot and the InP matrix. The location where the
line integrations were performed is highlighted by the white circle. Full width of image = 50
nm.

27

0 100 200 300 400 500 600 700 800 900
−0.02

0

0.02

0.04

Z Position (Angstrom)

S
tra

in
 F

ie
ld

−2 −1 0 1 2

x 10−3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Eigenvalues (T= 303.7178)

Real

Im
ag

in
ar

y

−2 −1 0 1 2

x 10−3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Eigenvalues (T = 417.0880)

Real
Im

ag
in

ar
y

−2 −1 0 1 2

x 10−3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Eigenvalues (T = 553.6138)

Real

Im
ag

in
ar

y

DRx/Dz

Figure 4: Eigenvalues of the Jacobian matrix shown in relation to the gradient of the displace-
ment field (dRx/ dz , below) for 31 beams at the [111] zone-axis orientation. The calculations
were performed at the single point highlighted in Fig. 3.

28

Figure 5: Simulated images of a truncated InAs QD in InP for varying values of the Distance

parameter: a) 1.1, b) 2.0, c) 11, d) 29 , e) 380, f) 2000, g) 21000, h) 53000 and i) 225000.
The simulations were performed using 21 beams at the [001] zone-axis orientation and each
image was scaled so that black/white represented the minimum/maximum intensity present
within a particular image, respectively.

29

10−1 100 101 102 103 104 105 106
101

102

103

104

105

Distance

Ti
m

e
(s

)
Runge−Kutta 4(5)
Adams PECE
Adams−multistep (CDRIV)
Backwards Differentiation Formulas
Bulirsch−Stoer
Adams−multistep (SLSODE)

Figure 6: Calculation time as a function of the Distance (defined in the text) and calculation
method for an InAs quantum dot in InP. The simulations were performed using 21 beams at
the [001] zone-axis orientation.

30

10−1 100 101 102 103 104 105 106
100

101

102

103

104

Distance

Ti
m

e
(s

)
Runge−Kutta 4(5)
Adams PECE
Adams−multistep (CDRIV)
Backwards Differentiation Formulas
Bulirsch−Stoer
Adams−multistep (SLSODE)

Figure 7: Calculation time as a function of the Distance (defined in the text) and calculation
method for an InAs spherical inclusion in InP. The simulations were performed using 21
beams at the [001] zone-axis orientation.

31

10−1 100 101 102 103 104 105 106
101

102

103

104

Distance

Ti
m

e
(s

)
Runge−Kutta 4(5)
Adams PECE
Adams−multistep (CDRIV)
Backwards Differentiation Formulas
Bulirsch−Stoer
Adams−multistep (SLSODE)

Figure 8: Calculation time as a function of the Distance (defined in the text) and calculation
method for a screw dislocation in InP. The simulations were performed using 21 beams at
the [001] zone-axis orientation.

32

0 1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

Number of Function Calls

Ti
m

e
(s

)

Adams−multistep (SLSODE)

Adams PECE
Adams−multistep (CDRIV)

Runge−Kutta 4(5)

Bulirsch−Stoer

x106

Figure 9: The time required to generate an image with a Distance value of 350 plotted against
the number of function evaluations performed for 5 of the non-stiff integration routines.

33

