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A SCHWARZ WAVEFORM MOVING MESH METHOD∗

RONALD D. HAYNES† AND ROBERT D. RUSSELL‡

Abstract. An r-refinement (moving mesh) method is considered for solving time dependent
partial differential equations (PDEs). The resulting coupled system, consisting of the physical PDE
and a moving mesh PDE, is solved by a Schwarz waveform relaxation method. In particular, the
computational space-time domain is decomposed into overlapping subdomains and the solution ob-
tained by iteratively solving the system of PDEs on each subdomain. Dirichlet boundary conditions
are used to pass solution information between neighboring regions. The efficacy of this approach is
demonstrated for some model problems. For problems where the solutions evolve on disparate time
scales in different regions of the spatial domain, this approach demonstrates the significant savings
in computational time and effort which are possible.
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1. Introduction. The method of lines (MOL), one of the predominant ap-
proaches for solving time dependent parabolic partial differential equations (PDEs),
involves discretizing spatially and then integrating in time along either fixed or moving
lines. The efficacy of the method rests on that of the subsequent initial value problem
(IVP) solvers. Traditional IVP solvers integrate using time steps chosen to keep an
estimate of the local error below some user specified tolerance. As a consequence, the
time step, largely dictated by the behavior of the fastest components locally, is used
to integrate all solution components.

This global approach introduces inefficiencies by often requiring a small time step
for each unknown, particularly when there are disparate scales in solution components.
This occurs when solution scales along lines differ substantially, which is the case, for
example, when the solution has moving interfaces or singular behavior.

A number of ways to overcome this limitation by integrating using steps locally
suited to the time dynamics have been investigated. The idea appears to have origi-
nated in a paper by Rice [42] which considers split or multirate Runge–Kutta meth-
ods applied to systems of ordinary differential equations (ODEs). In the independent
work of Gander and Stuart [22] and Giladi and Keller [25], the domain decomposition
method is applied for solving time dependent PDEs. Splitting the problem spatially
allows the solution in different parts of the spatial domain to be evolved according
to local time scale. The technique, known as Schwarz waveform relaxation, is able to
overcome many of the problems which exist in applying the ODE methods mentioned
above to semidiscretized PDEs.

It is well accepted that the efficient solution of complex PDEs generally requires
methods which are adaptive in both space and time. In this paper we are interested in
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a class of spatially adaptive moving mesh PDE methods introduced in [41, 29, 30]. Our
purpose is to introduce and explore a natural coupling of domain decomposition, in the
Schwarz waveform context, and the spatially adaptive moving mesh PDE methods.

In the next two sections we review the relevant literature for both the ODE and
PDE contexts. In section 4 we review the so-called moving mesh PDE methods.
Section 5 introduces a Schwarz waveform moving mesh method. In section 6 we
provide some numerical results to justify the utility of the technique. We conclude in
section 7 with a summary and discussion of ongoing and future work.

2. ODE methods. There have been a number of approaches for solving systems
of ODEs using decoupled integration. A decoupled integration method proceeds by
identifying groups of components which evolve at similar time scales or for which it is
advantageous to use particular integration formulas. Communication between the sub-
systems is typically handled through either interpolation or some iterative procedure.

Interpolation based methods. Gear [24] investigates solving a system of ODEs
where the ith component is integrated using a step size function hi(t). Due to the
cost of the required interpolations the method is deemed competitive only if the
cost of the function evaluations is high or if fi depends on few solution components.
Hofer [28] proposes a method where the ODE is decoupled into stiff and nonstiff
components. Computational efficiency is achieved by the decoupling of the integration
and by restricting the number of implicit formulations to a few equations. Assuming
the system has been decoupled a priori, Andrus [2] presents a method where both a
different integration method and time step are used for the slow and fast subsystems.
Skelboe [44, 43] investigates multirate decoupled backward differentiation formulas
(BDFs) for general systems of ODEs separated into subsystems. The partitioning
requires subsystems having strongly interacting components but weak couplings to the
other subsystems. Deuflhard [10] suggests analyzing the Jacobian to detect groups of
fast and slow components. More recently, Engstler and Lubich [11, 12] have considered
a multirate technique which does dynamic decoupling using extrapolation methods.

Iterative based methods. One of the earliest techniques for decoupling the integra-
tion of systems of ODEs was waveform relaxation, where subsystems are integrated
separately and communication between them handled through iteration. The the-
ory of the method is considered in Lelarasmee, Ruehli, and Sangiovanni-Vincentelli
[35] and later in Miekkala and Nevanlinna [38], which contributed to the subsequent
popularization of the method.

3. PDE methods. There have been several attempts to incorporate a multirate
strategy within a solution methodology for PDEs. The MOL, for example, yields a
large system of ODEs for which there may be a motivation to decouple the fast
and slow components. The partitioning of components can be done dynamically and
automatically to adapt to temporally and spatially evolving features in the solution,
although this complicates the use of the majority of the above ODE methods.

Not surprisingly the motivation to use different space-time grids in regions of the
computational domain has spawned intensive research. Flaherty and Moore [14] de-
velop integrated space-time hp-refinement strategies. These methods make decisions
about the number of mesh points, time step size, and the order of the time integration
method locally in space-time in a unified manner. In this sense these methods may be
viewed as a class of multirate methods. These methods are computationally robust;
however, the resulting space-time meshes are complicated and require sophisticated
data structures for efficient implementation [13].
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Domain decomposition methods (e.g., see [7, 40]) attempt to solve a problem
over the entire spatial domain by iteratively solving on subdomains. There have been
at least three general approaches for applying domain decomposition to parabolic
problems in a space-time domain:

1. Discretize in time and solve the resulting elliptic problems with classical do-
main decomposition [5, 37, 34].

2. Discretize in space and apply waveform relaxation to the system of ODEs
[36, 33, 32].

3. Subdivide the spatial domain and iteratively solve a sequence of PDEs defined
on each subdomain [15, 18, 25].

The first approach is in some sense the most natural since one utilizes the exten-
sive literature for domain decomposition applied to elliptic problems. This technique
suffers from a couple of difficulties. First, since the elliptic problems arise after dis-
cretizing in time, we are forced to use the same time step on each subdomain. Second,
the computed solution information must be exchanged at the end of each time step.
This necessitates that identical time steps be used throughout the spatial domain and
makes a natural parallel implementation difficult.

The second approach allows different time steps in different regions of the spatial
domains. Information is transmitted between subdomains after solving a subset of
ODEs over a time window, not after each step. Unfortunately, for Jacobi, Gauss–
Seidel, and SOR waveform relaxation methods, in the case where the ODEs result
from a spatial discretization of a PDE, the constants which arise in the error estimates
depend negatively on the mesh parameter Δx. Sophisticated multigrid techniques
have been proposed to overcome the negative dependence on the mesh parameter for
these classical waveform relaxation methods; cf. [32, 36, 46].

The third class of methods, which have become known as Schwarz waveform
relaxation methods, overcome the poor convergence of waveform relaxation methods.
These methods were developed by Gander and colleagues [17, 22, 18, 20, 15] and
independently by Giladi and Keller in [25]. The methods allow different numerical
treatments (time step and integration formula) on different subdomains and have
convergence independent of the mesh parameter, without the added complication of
the multigrid framework. Since these methods provide the basis for the methods
developed in the next section, we describe them in more detail below.

Consider a general parabolic problem

ut = L(u, x, t) in Ω,

subject to appropriate initial and boundary conditions on ∂Ω. In the case of two
overlapping subdomains Ω0 and Ω1, the classical Schwarz waveform relaxation method
can be succinctly written as follows: for j = 0, 1,

∂u
(k+1)
j

∂t
= L(u

(k+1)
j , x, t), (x, t) ∈ Ωj ,

u
(k+1)
j (x, t) =

{
u

(k)
1−j(x, t), (x, t) ∈ Γj = ∂Ωj ∩ Ω1−j ,

given boundary condition x, t ∈ ∂Ωj − Γj .

There have been many theoretical advances towards understanding the conver-
gence of Schwarz waveform relaxation. In [22] linear and superlinear convergence
results are obtained for the one-dimensional heat equation. Convergence is shown to
be independent of the mesh parameter (and hence robust with respect to mesh refine-
ment), and the convergence rate improves by increasing the size of the overlap. Giladi
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and Keller [25] prove superlinear convergence for constant coefficient convection diffu-
sion equations. Gander [17, 18] extends these results to the one-dimensional, variable
coefficient reaction diffusion case. Gander, Halpern, and Nataf [20] apply overlapping
Schwarz waveform methods to the wave equation and a constant coefficient, linear
convection reaction diffusion equation. The effect of the Dirichlet transmission con-
ditions at the subdomain boundaries is studied and found to slow convergence of the
algorithms. Optimal transmission conditions are then derived which lead to nonover-
lapping Schwarz methods which converge in a finite number of steps [16]. Multidi-
mensional extensions of many of these results are available [23, 19]. In a recent paper
[15], Gander and Rohde provide results for one-dimensional convection-dominated
conservation laws.

In the next section we describe the moving mesh PDE method and in section 5 we
propose a new moving mesh Schwarz waveform method which inherits the favorable
properties of the basic method and the spatial mesh resolution abilities of moving
mesh PDEs.

4. Moving mesh methods. Adaptive mesh methods for PDEs typically fall
into one or more of the following broad categories:

• r-refinement: moving a fixed number of mesh points to difficult regions of the
physical domain,

• p-refinement: varying the order of the numerical method to adapt to local
solution smoothness,

• h-refinement: mesh refinement and derefinement, depending upon the local
level of resolution.

These methods may be applied in either a static or dynamic fashion. Static meth-
ods involve refining/coarsening or redistributing mesh points at fixed times during a
calculation. Dynamic (or moving mesh) methods solve for the solution and mesh
simultaneously. The latter, some of whose advantageous features will be explained
subsequently, are the ones considered here.

To be specific, consider the solution of a PDE of the form

ut = L(u), 0 < x < 1, t > 0,

subject to appropriate initial and boundary conditions, where again L denotes a
spatial differential operator in the physical coordinate x. Our goal is basically to find,
for fixed t, a one-to-one coordinate transformation

x = x(ξ, t) : [0, 1] → [0, 1] with x(0, t) = 0, x(1, t) = 1

such that u(x(ξ, t), t) is sufficiently smooth that a simple mesh can be used to resolve
solution features in the computational domain ξ ∈ [0, 1]. Typically a uniform mesh,

ξi =
i

N
, i = 0, 1, . . . , N,

suffices, and the mesh in the physical coordinate x is then specified from the mesh
transformation by xi(t) = x(ξi, t), i = 0, 1, . . . , N .

A standard way to perform mesh adaptation in space is to use the equidistribu-
tion principle (EP) [9]: Given some measure M(t, x, u) of the error in the numerical
solution, equidistribution requires that the mesh points satisfy∫ xi

xi−1

M(t, x̃, u) dx̃ ≡ 1

N

∫ 1

0

M(t, x̃, u)dx̃



660 RONALD D. HAYNES AND ROBERT D. RUSSELL

on each subinterval [xi−1(t), xi(t)] or∫ x(ξi,t)

0

M(t, x̃, u) dx̃ ≡ ξi

∫ 1

0

M(t, x̃, u)dx̃ for i = 1, . . . , N.

The continuous generalization of this is that∫ x(ξ,t)

0

M(t, x̃, u) dx̃ = ξθ(t),(4.1)

where θ(t) ≡
∫ 1

0
M(t, x̃, u) dx̃ (e.g., see [29]). It follows directly from (4.1) that

∂

∂ξ

{
M(t, x(ξ, t), u)

∂

∂ξ
x(ξ, t)

}
= 0.(4.2)

Note that (4.2) does not explicitly involve the node speed ẋ. This is generally in-
troduced by relaxing the equation to require equidistribution at time t + τ . In
[41, 29, 30] a number of parabolic moving mesh PDEs (MMPDEs) are developed
using somewhat subtle simplifying assumptions and their correspondence to various
moving mesh methods (previously motivated only by heuristic arguments) is shown.
One particularly useful MMPDE is

∂

∂ξ

(
M(t, x(ξ, t), u)

∂ẋ

∂ξ

)
= −1

τ

∂

∂ξ

(
M(t, x(ξ, t), u)

∂x

∂ξ

)
.(MMPDE4)

The relaxation parameter τ is chosen in practice so that the mesh evolves at a rate
commensurate with that of the solution u(x, t).

A simple popular choice for M(t, x, u) is the arclength-like monitor function [3, 45]

M(x, u, t) =

√
1 +

1

α
|ux|2.(4.3)

This choice is based on the premise that we expect the error in the numerical solution
to be largest in regions where the solution has large gradients. The choice of monitor
function is often problem class dependent; e.g., monitor functions which preserve the
scaling invariance of the physical PDE [4] are seen to work well for reaction diffusion
problems having blow-up solutions (as opposed to the arclength monitor function, for
instance, which ultimately fails to resolve the solution near the singularity in time).

As outlined in the previous section, using a moving mesh method to solve a PDE
requires solving a coupled system of PDEs for the unknown mesh transformation and
solution. Using the mesh transformation x = x(ξ, t) to rewrite the physical PDE in
quasi-Lagrangian form, we get

u̇− uxẋ = Lu,(4.4)

where the total time derivative u̇ is given as

u̇ = ut + uxẋ.

Equation (4.4) and a moving mesh equation are solved simultaneously for the mesh
x(ξ, t) and corresponding solution u(x(ξ, t), t). Specifically, we solve the coupled PDE
system

u̇− uxẋ = L(u),

(M(x, u, t)ẋξ)ξ = −1

τ
(M(x, u, t)xξ)ξ

(4.5)
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using the moving MOL approach. Discretizing spatially with centered differences we
obtain the semidiscrete approximation

u̇i −
(
ui+1 − ui−1

xi+1 − xi−1

)
ẋi = fi,

Mi+1 + Mi

2(1/N)2
(ẋi+1 − ẋi) −

Mi + Mi−1

2(1/N)2
(ẋi − ẋi−1) =

−1

τ

{
Mi+1 + Mi

2(1/N)2
(xi+1 − xi) −Mi + Mi−1

2(1/N)2
(xi − xi−1)

}

(4.6)

for i = 1, . . . , N−1. The right-hand side of the semidiscrete physical PDE, fi, denotes
the discrete approximation to the spatial operator L at ξ = ξi. Centered differences
are used to discretize L. The quantity Mi denotes a centered difference approximation
to the monitor function at xi. In actual calculations, Mi is replaced by a smoothed
value

M̃i =

√√√√ i+p∑
k=i−p

(Mk)2
(

γ

γ + 1

)|k−i| / i+p∑
k=i−p

(
γ

γ + 1

)|k−i|
,

where γ = 2 and p = 2 [29].

Initial and boundary conditions for the physical PDE come from the problem
description. On a fixed interval we specify ẋ0 = ẋN = 0 as boundary conditions for
the mesh. If the initial solution u(x, 0) is smooth, then an initial uniform mesh for
x(ξ, 0) is normally sufficient. If the initial solution has features which are not resolved
on a uniform mesh for the chosen value of N , then an equidistributed initial mesh is
required. One way used in [31] to compute an initial equidistributed mesh is to solve
the PDE

ut = u0(x), u(x, 0) = 0,

coupled with a moving mesh equation. Solving this system over the time interval
0 ≤ t ≤ 1 with a uniform initial mesh will yield the solution u(x, 1) = u0(x), and
the resulting mesh will approximately equidistribute the initial solution. To avoid
propagating any errors from this calculation, the initial solution is reevaluated at the
new initial mesh.

The semidiscrete approximation (4.6) describes a system of linearly implicit ODEs
which may be written in the form

V (y)y′ = g(y).(4.7)

The vector y denotes the unknowns ordered as (u0, x0, u1, x1, . . . , uN , xN )T , and V (y)
is a banded matrix which depends on the unknown solution and mesh.

A typical implementation (cf. [31]) for solving (4.5) involves discretizing spatially
and solving (4.7) with a stiff ODE solver such as DASSL [39]. In the next section
we propose a Schwarz waveform moving mesh method to solve (4.5) and describe its
implementation.
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5. Schwarz waveform moving mesh method. In this section we propose a
new Schwarz waveform moving mesh (or simply “moving Schwarz”) method. The
basic idea is to apply Schwarz waveform relaxation, as described in section 3, to
the coupled system of physical and moving mesh PDEs (4.5). Specifically, we first
decompose Ω = [0, 1] into D nonoverlapping fixed subdomains Ω̃j , j = 1, . . . , D. Each

subdomain Ω̃j is enlarged by an overlap region consisting of R mesh points, giving
overlapping domains Ω1,Ω2, . . . ,ΩD. The physical PDE is then discretized along
with a moving mesh equation on each subdomain. We fix the mesh points on the
boundary of Ω̃j , j = 1, . . . , D, but allow the mesh points to move within and on the
outer boundary of the overlap regions. Algorithmically, there is no reason to keep the
boundaries fixed. However, there is a tendency for moving mesh methods to emphasize
the most pathological regions of the solution. Allowing the subdomain boundaries to
move could potentially negate the effort to isolate difficult regions within individual
subdomains. We will return to this point in the next section.

The convergence of overlapping classical Schwarz waveform relaxation is known to
depend on the width of the overlap region. In this implementation we have found that
having the width of the overlap in the computational domain of moderate size works
well, even for somewhat pathological solution behavior in the physical domain where
the width of the overlap in the physical variables varies (but the number of mesh
points in this region is fixed). A priori determining an optimal width of the overlap
region in the computational domain would be difficult. As in the fixed mesh case,
the rate of convergence of the Schwarz iteration is improved as the size of the overlap
is increased, with the faster convergence being offset by the increased computational
cost. Things are further complicated by the desire to isolate difficult regions of the
solution from regions where there is little activity. As the overlap is increased more
subdomains become “active.”

Let xj and ξj denote the physical and computational meshes on each subdomain
Ωj , and denote the solution on each subdomain by uj . The moving Schwarz method
requires solving

u̇k
j −

∂uk
j

∂x
ẋk
j = L(uk

j ),(
M(xk

j , u
k
j , t)

∂ẋk
j

∂ξ

)
ξ

= −1

τ

(
M(xk

j , u
k
j , t)

∂xk
j

∂ξ

)
ξ

,

on Ωj with j = 1, . . . , D, for k = 1, 2, . . . .
The boundary values for uk

j and xk
j come from the values uk−1

j−1 , x
k−1
j−1 and uk−1

j+1 , x
k−1
j+1

on the left and right boundaries of Ωj , respectively, from the previous iteration. Each
Schwarz waveform iteration requires the solution of D problems with (known) moving
boundaries. This is illustrated in Figure 5.1 for D = 3.

On each subdomain the coupled system of PDEs is discretized in space as de-
scribed in section 4 and the resulting ODEs are integrated over successive time win-
dows. The time dependent boundary conditions for uj and xj on these time windows
are obtained by cubic spline interpolation of the data from the previous iteration. In-
terpolation is required since in general the data from iteration k− 1 is not computed
on the same sequence of time steps as iteration k.

For efficiency, the algorithm is designed with an adaptive time windowing strategy.
The algorithm begins by solving the sequence of moving boundary problems on a
time window [0, T ]. If uj or xj fails to reach t = T in the maximum allowable time
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III

X X

X X

X  X (t) (t) (t)

(t)

L R L R

L R

T T

T

III

Fig. 5.1. Sequence of moving boundary problems solved during one iteration of the Schwarz
waveform moving mesh method over a time window [0, T ].

steps, the iteration is restarted with a smaller time window. The window is also
reduced if the Schwarz iteration fails to converge in 6 iterations and enlarged if the
iteration converges in fewer than 4 iterations. These values, chosen on the basis of
significant experimentation [27], provide a balance between efficiency and storage.
The latter can be significant even in the one-dimensional case because in the absence
of a guarantee that the maximum principle holds, we conservatively require successive
approximations over subdomains to agree to within some user specified tolerance δ
before the waveform iteration is terminated. A tolerance of δ = 1e− 4 is used in the
experiments with local error control tolerance (for the time integration) of 1e− 6.

As a final note, the code provides each subdomain with an initial equidistributed
mesh. That is, we solve ut = u0(x) for x ∈ Ω̃j and a moving mesh PDE subject to
u(x, 0) = 0. This provides a grid which equidistributes the initial solution to the PDE
over each subdomain.

6. Numerical results. To provide some initial testing of the moving Schwarz
method we first solve a straightforward test problem.

Example 1: Burgers’ equation I. Our first example is a standard test problem
for adaptive methods, Burgers’ equation. Specifically, we solve the one-dimensional
viscous Burgers’ equation

ut = εuxx − 1

2
(u2)x,

u(0, t) = 1, u(1, t) = 0,

u(x, 0) = c− 1

2
tanh

(
(x− x0)

4ε

)
,
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where c = 1/2, x0 = 1/4 or 1/10, and ε � 1. The solution is a traveling front of
thickness O(ε) which moves to the right from x0 at speed c. The initial and boundary
conditions are not compatible at t = 0 and x = 0, 1, but the discrepancy is small for
small ε. This does not pose any difficulties with the numerics.

We take ε = 1e − 4 and use 40 mesh points in each of the three equal sized
subdomains. The top row of plots in Figure 6.1 illustrates the computed solution at
times t = 0.25, 0.45, and 1.7. The bottom plots show the corresponding pointwise error
|ũ(xi, t

∗)− u(xi, t
∗)|, where ũ is the numerical approximation to the exact solution u

obtained using the Schwarz waveform moving mesh method. As expected we see a
sharp front moving from left to right. The mesh trajectories as functions of time are
displayed in Figure 6.2.
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Fig. 6.1. Solutions and pointwise errors for Burgers’ equation with the Schwarz waveform
moving mesh method at t = 0.25 (left), t = 0.45 (middle), and t = 1.7 (right).

At t = 0.25 and t = 1.7, the actual errors in the solution are on the order of the
tolerance controlling the convergence of the Schwarz waveform iteration. At t = 0.45,
however, the front encounters the boundary between the first and second subdomains,
and the level of communication between the solutions in these adjacent subdomains
is inadequate to preserve the accuracy. A possible fix may be provided by some of the
more sophisticated Schwarz waveform methods which use “higher-order” transmission
conditions at the boundary [20, 21].
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Fig. 6.2. Mesh trajectories for Burgers’ equation with ε = 1e − 4 and 40 points per domain
using the Schwarz waveform moving mesh method.
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Fig. 6.3. Number of time steps (per time window) in each subdomain.

Both the tremendous potential and current difficulties with our basic Schwarz
waveform moving mesh method are highlighted in Figure 6.3. In this plot we display
the number of time steps per time window taken by implicit Euler in each subdomain,
labeled I, II, and III in the legend of the plot. The dotted vertical lines specify the
time at which the layer crosses the subdomain boundaries. The data shows that while
the layer is completely contained in subdomain I (0 ≤ t ≤ 0.4), the work involved
to integrate over subdomains II and III is negligible. As the front approaches the
subdomain boundaries, the number of time steps in the adjoining domains increases
dramatically, indicating the standard difficulty experienced by the classical Schwarz
waveform iteration.

Another indicator of the performance of the classical Schwarz method is illustrated
in Figure 6.4. The maximum number of time steps per time window is fixed, so the
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Fig. 6.4. Number of time windows used up to time t for the Schwarz waveform moving mesh
method applied to Burgers’ equation with ε = 1e− 4.

size of the time window varies over the duration of the computation. There is a
dramatic decrease in the size of the time window as the moving front moves from
one subregion to the next. The time window is increased or decreased based on the
convergence of the Schwarz iteration. If the iteration has not converged within a user
specified number of iterations, the length of the time window is decreased. We see in
Figure 6.4 that the length of the time window is shortest when the front moves from
one subdomain to another.

Example 2: Burgers’ equation II. We now solve Burgers’ equation subject to the
initial condition

u(x, 0) = sin(2πx) +
1

2
sin(πx)

and boundary conditions u(0, t) = u(1, t) = 0, using three overlapping subdomains.
The solution develops a sharp front and moves to the right with diminishing amplitude.
Mesh trajectories for this initial condition are shown in Figure 6.5. In this case, the
solution evolves to a front in subdomain II. This results in a nearly uniform mesh in
subdomain I for the entire computation. The grids in subdomains II and III, however,
react to the evolving solution and carry the front to the boundary at x = 1. As with
the previous example, the convergence of the Schwarz iteration deteriorates as the
front moves from subdomain II to subdomain III.

Example 3: Two-spike problem. The next problem is

ut = εuxx + f(x, t),

where f(x, t) is defined such that the solution has two spikes and is given by

u(x, t) =
1

ε

(
max(0, tanh(t− t0))e

−(x−x0)
2/ε + max(0, tanh(t− t1))e

−(x−x1)
2/ε

)
.

These two spikes are centered at fixed locations x0 and x1 and begin to evolve at
different times t0 and t1. We choose x0 and x1 to keep the spikes well separated
in the spatial domain and choose t1 > t0. This allows the first spike to grow to its
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Fig. 6.5. Mesh trajectories for Burgers’ equation with ε = 1e − 3 and 20 points per domain
using the Schwarz waveform moving mesh method.
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Fig. 6.6. Exact solutions of the two-spike problem at t = 0, 0.6, 1.6, and 2.7.

maximum height before the second spike appears. All computations are done with
ε = 1e−3. Figure 6.6 illustrates the exact solution of the two-spike problem for times
t = 0.6, 1.6, and 2.7. (At t = 0, u(x, 0) ≡ 0.) At t = 0.6 the spike centered at x0 = 1/4
has appeared and continues to grow. The second spike centered at x1 = 3/4 emerges
at t = 3/2. At t = 2.7, both spikes have nearly reached their maximum height. This
problem is chosen to show the difficulties which can occur for moving mesh methods
when the solution to the PDE behaves badly in several regions, and how the Schwarz
waveform moving mesh method can be used to ameliorate the situation. Solving the
problem with 80 mesh points on one domain, the final solution at t = 2.7 and the mesh
trajectories on [0, 1] are shown in Figure 6.7. The computed solution is illustrated
by a line with open circles indicating the location of the mesh points, and the exact
solution is depicted with a thick solid line. The moving mesh method does indeed
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Fig. 6.7. Mesh trajectories (left) and solutions (right) of the two-spike problem with one domain
using the arclength monitor function.
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Fig. 6.8. Relative error in the computed solution on one domain using the arclength monitor
function and backward Euler (left) and variable order BDF formulation (right).

capture both spikes; however, a loss of accuracy in the second spike is evident by the
end of the computation. In fact, substantial errors arise in the computed solution
for t ≥ 3/2, corresponding to the birth of the second spike. Indeed, a moving mesh
method on one domain has great difficulty achieving sufficient resolution of the second
spike. The mesh trajectories indicate a relatively quick movement of mesh points from
the region of the left spike towards the emerging right spike for t > 3/2.

Figure 6.8 illustrates the relative error in the computed solution for the two-spike
problem on one domain. The plot on the left was obtained using implicit Euler to
integrate forward in time, while the plot on the right was obtained using a variable
order BDF implementation. The results are nearly identical. The loss of accuracy in
the computed solutions arises with the birth of the second spike at t = 1.5. In fact, a
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relatively large number of mesh points is vital to allow resolution of the second spike.

The loss of accuracy which occurs as the second spike grows is due, in part, to
the time required for the mesh to adapt to new features in the solution. This may be
controlled by the moving mesh parameter τ in MMPDE4. Decreasing the value of τ
facilitates a quicker mesh movement and hence a quicker return to an equidistributed
grid. However, this improves the accuracy of the computed solution at the expense
of necessitating much smaller steps in the time integration. The situation may be
improved by controlling the proportion of points outside the initial region of difficulty
by an appropriate choice of α in (4.3).

This problem is ideal for a two-domain simulation with the Schwarz waveform
moving mesh method. The computed and exact solutions and resulting mesh trajec-
tories are shown in Figure 6.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

x

u

Fig. 6.9. Mesh trajectories (left), computed and exact solutions (right) for the two-spike problem
on two subdomains.

Compared to the one-domain calculation, we see improved accuracy between the
spikes and in regions of high curvature. As expected, the mesh remains uniform in
each subdomain until the spike in that region is activated. At that point the mesh
in the subdomain adapts well to the evolving features of the solution using a simple
arclength monitor function and moderate values of τ . In fact, comparable accuracy
to that for the one-domain calculation is possible with many fewer mesh points.

Figure 6.10 compares the time steps taken by the ODE solver (backward Euler) for
the one-domain (left) and two-subdomain (right) simulations. In the two-subdomain
case we illustrate the time steps for subdomain I (solid) and subdomain II (dashed)
corresponding to the first waveform iteration. The time steps chosen for the one-
domain calculation are quite large until t = 1/4, when the left spike begins to grow.
The time steps remain relatively steady at 10−4 until the second spike emerges at
t = 3/2. Immediately the time steps are reduced by an order of magnitude as the
mesh points race to adjust to the emerging features in the solution.

The time steps chosen in each subdomain by the Schwarz waveform moving mesh
method are controlled primarily by the local features of the solution. During the
solution on subdomain I the time steps reduce to approximately 10−4 at t = 1/4.
This time corresponds to the emergence of the first spike. The time steps persist at
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Fig. 6.10. Time steps for the one-domain (left) and two-subdomain (right) solution of the
two-spike problem.

this level for the duration of the simulation. Little work is required to integrate the
solution and mesh components in subdomain II until t = 3/2. At that time, the size of
the acceptable time steps decreases to a level commensurate with that on subdomain
I. It is important to note that the time steps in subdomain I are not affected by
the development of the second spike. No mesh points move from one subdomain to
another. This keeps the time steps an order of magnitude larger than for the one-
domain calculation. This more than compensates for the cost of the iteration required
in the Schwarz waveform moving mesh method, resulting in approximately half the
run time.

7. Conclusions. The moving method of lines has proved to be an effective tool
for solving a number of time dependent PDEs [31]. In this paper we propose a modifi-
cation of the basic procedure—a Schwarz waveform moving mesh method. The moving
mesh PDE and physical PDE are solved by a domain decomposition algorithm. The
computational space-time domain is decomposed into a number of overlapping sub-
domains. The solution is computed iteratively by solving the system of PDEs on each
subdomain with information exchange achieved through Dirichlet conditions at the
subdomain boundaries. Problems with localized fast-changing solution components
are shown to benefit from this approach.

Traditionally, the solution of the resulting system of ODEs in time has been
obtained using standard implementations of stiff ODE system solvers with a fully
implicit time stepping package, such as in [31] where DASSL [39] is used.

In the simple implementation of the Schwarz waveform method investigated here,
we solve (4.7) using a backward Euler method,

V (yn)(yn − yn−1) − hng(yn) = 0,

and a crude time-stepping procedure where the local error is controlled by step dou-
bling/halving. The nonlinear algebraic systems are solved with a modified Newton
method, using the strategies of Gustafsson and Söderlind [26] and Alexander [1] to
control factorizations and evaluations of the Jacobian matrix. The Jacobian is evalu-
ated using finite differences adapted to sparse matrices [8].
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There are many important aspects to consider when investigating the feasibil-
ity of the Schwarz waveform method. Classical Schwarz iteration is known to suffer
from slow convergence, particularly when the solution components have substantially
different time scales. The moving mesh method is specifically designed so that so-
lution components are closer to having the same time scale than for the standard
MOL approach. It remains an issue, although we have seen marked improvement
in numerical results. The slow convergence can be alleviated through the use of
higher-order transmission conditions at the subdomain boundaries [20]. Furthermore,
to avoid fast-changing solution components crossing subdomain boundaries, a coarse
grain adaptivity may be employed as well, where one dynamically determines (spa-
tially) the number and placement of subdomains. As a front approaches a subdo-
main boundary, for example, domains may be collapsed or merged until the front has
passed. In our implementation, the Schwarz iteration proceeds until the solutions on
all subdomains agree to within some specified tolerance. This requires storage of the
solution at all points in the computational space. When a maximum principle holds,
it is possible to save substantially on storage by keeping boundary data only to test
for convergence. Further study is certainly required to understand the role of overlap
for Schwarz waveform moving mesh methods.

The issues of efficiency are even more important in higher spatial dimensions,
where fast solution behavior locally comes at a much higher cost if adaptivity is not
done properly or system solutions not done efficiently; cf. [47]. One major reason that
moving mesh methods are ideally suited to handle certain problems with singularities
is that, by choosing a suitable monitor function to incorporate scaling as proposed
by Beckett and Mackenzie [3], a proper balance between adaptivity done in the inner
and outer solution regions is assured. Unfortunately, for problems with multiple scales
or multiple regions with fast scale behavior, using moving mesh methods alone for
adaptivity can be problematic in determining the relative importance of the regions
of fast solution activity. While a simple implementation of the Schwarz waveform
method is not a panacea in and of itself, it can be the ideal tool for overcoming many
of these difficulties. A simple Schwarz waveform relaxation has been applied directly
for the mesh equation for a two-dimensional problem in [6]. We intend to investigate
a more sophisticated implementation of the Schwarz waveform method, incorporating
the features discussed here, in future work. An ultimate test of the method would
entail a careful comparison with the other approaches of section 3.

REFERENCES

[1] R. Alexander, The modified Newton method in the solution of stiff ordinary differential equa-
tions, Math. Comp., 57 (1991), pp. 673–701.

[2] J. F. Andrus, Numerical solution of systems of ordinary differential equations separated into
subsystems, SIAM J. Numer. Anal., 16 (1979), pp. 605–611.

[3] G. Beckett and J. A. Mackenzie, Uniformly convergent high order finite element solutions
of a singularly perturbed reaction-diffusion equation using mesh equidistribution, Appl.
Numer. Math., 39 (2001), pp. 31–45.

[4] C. J. Budd, W. Huang, and R. D. Russell, Moving mesh methods for problems with blow-up,
SIAM J. Sci. Comput., 17 (1996), pp. 305–327.

[5] X. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer.
Math., 60 (1991), pp. 41–61.

[6] W. Cao, W. Huang, and R. D. Russell, A moving mesh method in multiblock domains with
application to a combustion problem, Numer. Methods Partial Differential Equations, 15
(1999), pp. 449–467.



672 RONALD D. HAYNES AND ROBERT D. RUSSELL

[7] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in Acta Numerica, 1994,
Acta Numer., Cambridge University Press, Cambridge, UK, 1994, pp. 61–143.

[8] A. Curtis, M. Powell, and J. Reid, On the estimation of sparse Jacobian matrices, IMA J.
Appl. Math., 13 (1974), pp. 117–119.

[9] C. de Boor, Good approximation by splines with variable knots. II, in Conference on the
Numerical Solution of Differential Equations (Dundee, 1973), Lecture Notes in Math. 363,
Springer, Berlin, 1974, pp. 12–20.

[10] P. Deuflhard and J. Heroth, Dynamic dimension reduction in ODE models, in Scientific
Computing in Chemical Engineering, F. Keil, W. Mackens, H. Voß, and J. Werther, eds.,
Springer-Verlag, Berlin, 1996, pp. 29–43.

[11] C. Engstler and C. Lubich, Multirate extrapolation methods for differential equations with
different time scales, Computing, 58 (1997), pp. 173–185.

[12] C. Engstler and C. Lubich, MUR8: A multirate extension of the eighth-order Dormand-
Prince method, Appl. Numer. Math., 25 (1997), pp. 185–192.

[13] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, and L. Ziantz, Adaptive
local refinement with octree load-balancing for the parallel solution of three-dimensional
conservation laws, J. Parallel Distrib. Comput., 47 (1997), pp. 139–152.

[14] J. E. Flaherty and P. K. Moore, Integrated space-time adaptive hp-refinement methods for
parabolic systems, Appl. Numer. Math., 16 (1995), pp. 317–341.

[15] M. J. Gander and C. Rohde, Overlapping Schwarz waveform relaxation for convection-
dominated nonlinear conservation laws, SIAM J. Sci. Comput., 27 (2005), pp. 415–439.

[16] M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), pp. 699–731.
[17] M. J. Gander, Overlapping Schwarz waveform relaxation for parabolic problems, in Tenth

International Conference on Domain Decomposition Methods, Contemp. Math. 218,
J. Mandel, C. Farhat, and X.-C. Cai, eds., AMS, Providence, RI, 1998, pp. 425–431.

[18] M. J. Gander, A waveform relaxation algorithm with overlapping splitting for reaction diffu-
sion equations, Numer. Linear Algebra Appl., (1998), pp. 125–145.

[19] M. J. Gander and D. Daoud, Overlapping Schwarz waveform relaxation for convection reac-
tion diffusion problems, in Thirteenth International Conference on Domain Decomposition
Methods, N. Debit, M. Garbey, R. Hoppe, J. Périaux, D. Keyes, and Y. Kuznetsov, eds.,
Domain Decomposition Press, Bergen, Norway, 2002, pp. 227–233.

[20] M. J. Gander, L. Halpern, and F. Nataf, Optimal convergence for overlapping and non-
overlapping Schwarz waveform relaxation, in Eleventh International Conference on Domain
Decomposition Methods, C.-H. Lai, P. Bjørstad, M. Cross, and O. Widlund, eds., ddm.org,
Augsburg, Germany, 1999, pp. 27–36.

[21] M. J. Gander, L. Halpern, and F. Nataf, Optimized Schwarz methods, in Twelfth Interna-
tional Conference on Domain Decomposition Methods (Chiba, Japan), T. Chan, T. Kako,
H. Kawarada, and O. Pironneau, eds., Domain Decomposition Press, Bergen, Norway,
2001, pp. 15–28.

[22] M. J. Gander and A. M. Stuart, Space-time continuous analysis of waveform relaxation for
the heat equation, SIAM J. Sci. Comput., 19 (1998), pp. 2014–2031.

[23] M. J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for the heat equation
in n dimensions, BIT, 42 (2002), pp. 779–795.

[24] C. W. Gear and D. R. Wells, Multirate linear multistep methods, BIT, 24 (1984), pp. 484–
502.

[25] E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems, Numer.
Math., 93 (2002), pp. 279–313.
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